人工智能别笑,1v1的DotA比赛其实比围棋简单

我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

(原标题:AI别笑,1v1的DotA比赛其实比围棋简单)

人工智能别笑,1v1的DotA比赛其实比围棋简单

雷锋网(公众号:雷锋网)消息,关于OpenAI的DotA 2游戏人工智能在The International比赛上击败了人类玩家的消息,就像当时的AlphoGo一样,又一次刷屏了。我们仿佛看到了AI又在得意地笑。

这次比赛重要的是,像DotA这样的MOBA多人在线战术竞技游戏,以及星际争霸这样的RTS即时战略游戏,一直被视为超越了当前AI技术的能力,远非AI能掌握及击败人类的。这些游戏需要在比赛中有长时间的战略决策和多人合作,并具有比国际象棋、围棋等更复杂的状态和行动空间,后面的几种棋类游戏在过去几十年里,都逐一被AI技术攻略了。

雷锋网此前报道,DeepMind已经研究星际争霸2有一段时间了,前不久也发布了一些研究成果。国内的阿里巴巴也与伦敦大学合作,研究过AI与星际。但到目前为止,研究人员还没有取得重大突破,而且一般认为,我们距离让AI在星际争霸2中战胜人类还有至少1-2年。

这也是为什么OpenAI的消息如此震惊的原因。

但如果更多了解DotA 2的AI是怎么样的,它是如何训练的,它用了什么样的游戏环境,就会发现,它取得了不少令人印象深刻的研究成果,但不是想像中那样的突破性的AI技术。前Google大脑团队成员Denny Britz就在hacker news上发起了讨论,从他的分析和其他讨论中也可以看出不少端倪。

不久后OpenAI就会公布具体的研究细节。不过先来看看DotA 2的AI解决的问题在现实中有多难,以及它与AlphaGo比又怎么样。

1v1的难度与5v5没法比

一般玩DotA 2游戏,都是5v5的对局。这种玩法需要用到高级的策略制定,团队沟通和协调能力,通常会是45分钟左右一局。1v1游戏的限制就很多了,两名选手基本上沿着单线行动,试图杀死对方,游戏时间通常在几分钟内。1v1比赛需要的是机械技能和短期战术,不需要长期规划或协调,而后者才是对当前AI技术最具挑战性的。事实上,在1v1中可以采取的有用行动数量是少于围棋的。有效状态空间,即玩家对游戏中正在发生的情况的想法,如果以更有效的方式进行表征的话,应该比围棋要小。

AI可以得到更多信息

OpenAI的人工智能很可能是在游戏AI的API上开发的,这样它可以访问人类无法访问的各种信息。而且,即使OpenAI研究者限制了访问某些类型的信息,AI比起人类仍然可以得到更准确的信息。例如,一项技能只能在一定范围内击中对手,而人类玩家必须看屏幕来估算与对手的距离。这需要练习,但AI就知道确切的距离信息,然后立即决定使用技能。获得各种精确的数据信息会带来很大的优势,比如在这次的游戏过程中,AI就有好几次是在最远距离上发动了技能。

反应时间优势

AI可以做到立即反应,但人类不行。如果反应优势再加上上面说的数据优势,就会形成另一大优势。比如,一旦对手逃出特定技能的使用范围,AI就可以立即取消使用,避免无效的技能施放,也不会耽误回复时间。

仅使用特定的游戏角色

DotA中有100多介角色,每个都有不同的能力和优势。这次比赛中,OpenAI的人工智能学习玩的唯一角色是影魔,当然影魔也是中路solo的常用英雄。它的技能一般直接攻击,而不是更复杂的让技能持续一段时间,这样就更容易从距离数据和快速反应时间这两个优势中获益,这正是AI擅长的。

部分规则写死

这次的游戏AI也不是一切从零开始训练的,它对游戏算是有一些“了解”。装备选择是写死的,押兵线这种技术也是,这些对比赛来说也很重要。根据现在的消息,AI学习的是与对手的互动。

总体来说,鉴于1v1比赛主要是机械技能的比拼,那人类玩家被击败也就不奇怪了。而且由于比赛环境有限制,加上人为限制了一系列可能的行动,以及几乎没有必要进行长期的规划或协调,结论也就显而易见了,即在这场1v1的DotA比赛中,AI击败人类冠军要解决的问题,实际上比围棋要更简单。

人工智能别笑,1v1的DotA比赛其实比围棋简单

AI技术本质上没有出现突然的突破,它的成功是算法的成功,也是研究者的成功。研究者聪明地设置了问题,并用正确的方式避开了当前技术的限制,取得了想要的成果。

据称,OpenAI的人工智能的训练时间大概是2周左右。AlphaGo当时需要在Google的GPU集群上进行几个月的高度分布的大规模培训。自那以来技术上已经取得了一些进展,但还不足以将计算要求降低一个数量级。

或许不明真相的新闻讨论有些过度了,不过实际上这次的研究还有不少非常令人惊讶的成果。

完全通过自我对抗进行训练

这次AI不需要任何训练数据,它也不用从人类的演示中学习,而是完全从随机开始,并且不断与自己对战。虽然这种技术并不新鲜,但令人惊讶的是,AI学到了一些人类玩家已经在使用的技术,这已经很厉害了。或许AI会学会其他人类不曾用过的技术,就像我们在AlphaGo与人类的对局中看到的那样,人类玩家已经开始从AI不那么容易理解的下法中学习了。

AI加电子竞技有了很大进步

用DotA和星际这样具有挑战性的环境来测试AI技术,是很重要的。如果电子竞技社区和游戏开发商也对AI技术应用于游戏的价值很感兴趣,那在得到他们的支持�,AI技术很可能会有进一步的进展。

部分可观察的环境

虽然OpenAI用游戏API开发的细节尚不清楚,但从人类玩家的角度来看,游戏中只能看到屏幕上显示的内容,玩家的视角受到了限制,比如说在上坡这样的地形上,就无法看清坡上的状况。这意味着,与围棋或象棋不同,对战游戏是处于一种部分可观察的环境中,无法了解有关当前游戏状态的完整信息。这些问题AI很难以解决,属于需要进行积极研究的领域。目前还不清楚1v1的DotA比赛中,环境的可观察性有多重要。

其实对于很多乍听起来耸人听闻的技术,都需要有清醒的认识。不出意料的,雷锋网发现马斯克也在Twitter对这一事件作了评价。

人工智能别笑,1v1的DotA比赛其实比围棋简单

他说,“OpenAI第一次在电子竞技中击败了人类顶级选手,难度比象棋和围棋都要大得多”,随后开始谈论AI的危害,“没人喜欢被监管,但一切(汽车、飞机、食品、药品等)可能给公众带来危害的都受到了监管,AI也应如此”。

这些炒作当然不是OpenAI研究者的错,研究者对自己成果的局限一直有非常清晰和明确的认识。过度解读AI的进步反而会带来一些危害,我们期待OpenAI公布他们研究的技术细节,避免错误的猜测。(张驰)

本文被转载1次

首发媒体 网易科技 | 转发媒体

随意打赏

google 人工智能 围棋人工智能alphago围棋人工智能围棋李世石dota2人工智能谷歌人工智能围棋dota人工智能人工智能围棋大战人工智能战胜围棋人工智能是什么什么是人工智能
提交建议
微信扫一扫,分享给好友吧。