Scrapy爬取美女图片续集

我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

美女 作者:七夜的故事

上一篇咱们讲解了Scrapy的工作机制和如何使用Scrapy爬取美女图片,而今天接着讲解Scrapy爬取美女图片,不过采取了不同的方式和代码实现,对Scrapy的功能进行更深入的运用。

在学习Scrapy官方文档的过程中,发现Scrapy自身实现了图片和文件的下载功能,不需要咱们之前自己实现图片的下载(不过原理都一样)。

在官方文档中,我们可以看到下面一些话:Scrapy为下载item中包含的文件(比如在爬取到产品时,同时也想保存对应的图片)提供了一个可重用的 item pipelines . 这些pipeline有些共同的方法和结构(我们称之为media pipeline)。一般来说你会使用Files Pipeline或者 Images Pipeline.

这两种pipeline都实现了以下特性:

  • 避免重新下载最近已经下载过的数据
  • Specifying where to store the media (filesystem directory, Amazon S3 bucket)    The Images Pipeline has a few extra functions for processing images:
  • 将所有下载的图片转换成通用的格式(JPG)和模式(RGB)
  • 缩略图生成
  • 检测图像的宽/高,确保它们满足最小限制

这个管道也会为那些当前安排好要下载的图片保留一个内部队列,并将那些到达的包含相同图片的项目连接到那个队列中。 这可以避免多次下载几个项目共享的同一个图片。

从上面的话中,我们可以了解到 Scrapy不仅可以下载图片,还可以生成指定大小的缩略图,这就非常有用。

使用Files Pipeline

当使用 FilesPipeline ,典型的工作流程如下所示:

  1. 在一个爬虫里,你抓取一个项目,把其中图片的URL放入 file_urls 组内。
  2. 项目从爬虫内返回,进入项目管道。
  3. 当项目进入 FilesPipeline,file_urls 组内的URLs将被Scrapy的调度器和下载器(这意味着调度器和下载器的中间件可以复用)安排下载,当优先级更高,会在其他页面被抓取前处理。项目会在这个特定的管道阶段保持“locker”的状态,直到完成文件的下载(或者由于某些原因未完成下载)。
  4. 当文件下载完后,另一个字段(files)将被更新到结构中。这个组将包含一个字典列表,其中包括下载文件的信息,比如下载路径、源抓取地址(从 file_urls 组获得)和图片的校验码(checksum)。 files 列表中的文件顺序将和源 file_urls 组保持一致。如果某个图片下载失败,将会记录下错误信息,图片也不会出现在 files 组中。

使用Images Pipeline

当使用Imagespipeline ,典型的工作流程如下所示:

  1. 在一个爬虫里,你抓取一个项目,把其中图片的URL放入 images_urls 组内。
  2. 项目从爬虫内返回,进入项目管道。
  3. 当项目进入 Imagespipeline,images_urls 组内的URLs将被Scrapy的调度器和下载器(这意味着调度器和下载器的中间件可以复用)安排下载,当优先级更高,会在其他页面被抓取前处理。项目会在这个特定的管道阶段保持“locker”的状态,直到完成文件的下载(或者由于某些原因未完成下载)。
  4. 当文件下载完后,另一个字段(images)将被更新到结构中。这个组将包含一个字典列表,其中包括下载文件的信息,比如下载路径、源抓取地址(从 images_urls 组获得)和图片的校验码(checksum)。 images 列表中的文件顺序将和源 images_urls 组保持一致。如果某个图片下载失败,将会记录下错误信息,图片也不会出现在 images 组中。

Pillow 是用来生成缩略图,并将图片归一化为JPEG/RGB格式,因此为了使用图片管道,你需要安装这个库。 Python Imaging      Library (PIL) 在大多数情况下是有效的,但众所周知,在一些设置里会出现问题,因此我们推荐使用 Pillow 而不是PIL.

咱们这次用到的就是Images Pipeline,用来下载图片,同时使用 Pillow 生成缩略图。在安装Scrapy的基础上,使用pip install pillow 安装这个模块。

打开cmd,输入scrapy startproject jiandan,这时候会生成一个工程,然后我把整个工程复制到pycharm中(还是使用IDE开发快)。

复制
上图就是工程的结构。

jiandanSpider.py ——Spider 蜘蛛

items.py —————–对要爬取数据的模型定义

pipelines.py————-咱们最终要存储的数据

settings.py—————-对Scrapy的配置

接下来我把代码贴一下(复制代码请到我博客): 1 2 3 4 5

 

最后咱们开始运行程序,cmd切换到工程目录,

输入scrapy crawl jiandan,启动爬虫。。。

启动爬虫
大约25分钟左右,爬虫工作结束。。。

咱们去看看美女图吧。

图
咱们打开thumbs文件夹,看看缩略图,下面有咱们设置的不同的尺寸。

1图 图2
今天的分享就到这里,如果大家觉得还可以呀,记得打赏呦。

via:七夜的故事

End.

随意打赏

提交建议
微信扫一扫,分享给好友吧。