傅盛:深度学习是什么?

我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

傅盛:深度学习是什么?

上一篇,我讲了为什么坚信人工智能。今天已成历史。

人工智能,就好像第四次工业革命,正从学术界的私藏,转变为一种能够改变世界的力量。尤其,以深度学习取得的进步为显著标志。

它让匍匐前进60年的人工智能一鸣惊人。

我们正降落到一片新大陆。深度学习带来的这场重大技术革命,有可能颠覆过去20年互联网对技术的认知,实现技术体验的跨越式发展。

那么, 深度学习到底是什么?怎么理解它的重要性?

我们先从概念和现象入手。

我总结了一句话,学术上看未必严谨,但从我的理解角度看—— 深度学习是基于多层神经网络的,海量数据为输入的,规则自学习方法。

这里包含了几个关键词:

第一个关键词叫多层神经网络。

深度学习所基于的多层神经网络并非新鲜事物,甚至在80年代被认为没前途。但近年来,科学家们对多层神经网络的不断算法优化,使它出现了突破性的进展。

以往很多算法是线性的。而这世界上大多数事情的特征是复杂非线性的。比如猫的图像中,就包含了颜色、形态、五官、光线等各种信息。深度学习的关键就是通过多层非线性映射将这些因素成功分开。

为什么要深呢?多层神经网络比浅层的好处在哪儿呢?

简单说,就是可以减少参数。 因为它重复利用中间层的计算单元。我们还是以认猫为例好了。它可以学习猫的分层特征:最底层从原始像素开始学习,刻画局部的边缘和纹;中层把各种边缘进行组合,描述不同类型的猫的器官;最高层描述的是整个猫的全局特征。

它需要超强的计算能力,同时还不断有海量数据的输入。 特别是在信息表示和特征设计方面,过去大量依赖人工,严重影响有效性和通用性。深度学习则彻底颠覆了“人造特征”的范式,开启了数据驱动的“表示学习”范式——由数据自提取特征,计算机自己发现规则,进行自学习。

你可以理解为——过去,人们对经验的利用,靠人类自己完成。在深度学习呢?经验,以数据形式存在。因此,深度学习,就是关于在计算机上从数据中产生模型的算法,即深度学习算法。

问题来了,几年前讲大数据,以及各种算法,与深度学习有什么区别呢?

过去的算法模式,数学上叫线性,x和y的关系是对应的,它是一种函数体现的映射。但这种算法在海量数据面前遇到了瓶颈。国际上著名的ImageNet图像分类大赛,用传统算法,识别错误率一直降不下去,上深度学习后,错误率大幅降低。在2010年,获胜的系统只能正确标记72%的图片;到2012年,多伦多大学的 Geoff Hinton利用深度学习的新技术,带领团队实现了85%的准确率。2015年的ImageNet竞赛上,一个深度学习系统以96%的准确率第一次超过了人类(人类平均有95%的准确率)。

计算机认图的能力,已经超过了人。尤其图像和语音等复杂应用,深度学习技术取得了优越的性能。为什么呢?其实就是思路的革新。

举几个脑洞大开的例子。

(1)

先说 计算机认猫。

我们通常能用很多属性描述一个事物。其中有些属性可能很关键,很有用,另一些属性可能没什么用。我们就将属性被称为特征。特征辨识,就是一个数据处理的过程。

传统算法认猫,也是标注各种特征去认。就是大眼睛,有胡子,有花纹。但这种特征写着写着,有的猫和老虎就分不出来,狗和猫也分不出来。这种方法叫——人制定规则,机器学习这种规则。

深度学习方法怎么办呢?直接给你百万张图片,说这里有猫,再给你上百万张图,说这里没猫。然后再训练一个深度网络,通过深度学习自己去学猫的特征,计算机就知道了,谁是猫。

(2)

第二个例子是 谷歌训练机械手抓取。

传统方法肯定是看到那里有个机械手,就写好函数,move到xyz标注的空间点,利用程序实现一次抓取。

而谷歌现在用机器人训练一个深度神经网络,帮助机器人根据摄像头输入和电机命令,预测抓取的结果。简单说,就是训练机器人的手眼协调。机器人会观测自己的机械臂,实时纠正抓取运动。

所有行为都从学习中自然浮现,而不是依靠传统的系统程序。

为了加快学习进程,谷歌用了14个机械手同时工作,在将近3000小时的训练,相当于80万次抓取尝试后,开始看到智能反应行为的出现。据公开资料,没有训练的机械手,前30次抓取失败率为34%,而训练后,失败率降低到18%。

这就是一个自我学习的过程。

(3)

有人问了, 深度学习,能学习写文章吗?

来看这个例子。斯坦福大学的计算机博士andrej kapathy曾用托尔斯泰的小说《战争与和平》来训练神经网络。每训练100个回合,就叫它写文章。100个回合后,机器知道要空格,但仍然有乱码。500个回合后,能正确拼写一些短单词。1200个回合后,有标点符号和长单词。2000个回合后,已经可以正确拼写更复杂的语句。

整个演化过程是个什么情况呢?

以前我们写文章,只要告诉主谓宾。而以上过程,完全没人告诉机器语法规则。甚至,连标点和字母区别都不用告诉它。不告诉机器任何程序。只是不停将原始数据进行训练,一层一层训练,最后输出结果——就是一个个看得懂的语句。

一切看起来都很有趣。人工智能与深度学习的美妙之处,也正在于此。

(4)

我还去硅谷看过一家公司——完全颠覆以往的算法, 利用深度学习实现图像深度信息的采集。

众所周知,市面上已经有无人机,可实现人的跟踪。它的方法是什么呢?一个人,在图像系统里,一堆色块的组合。通过人工的方式进行特征选择,比如颜色特征,梯度特征。拿简单的颜色特征举例:比如你穿着绿色衣服,突然走进草丛,就可能跟丢。或,他脱了件衣服,几个人很相近,也容易跟丢。

此时,若想在这个基础上继续优化,将颜色特征进行某些调整,是非常困难的。而且调整后,还会存在对过去某些状况不适用的问题。

总之,这样的算法需要不停迭代,迭代又会影响前面的效果。

而硅谷这个团队,利用深度学习,把所有人脑袋做出来,只区分好前景和背景。区分之后,背景全部用数学方式随意填充,再不断生产大量背景数据,进行自学习。只要把前景学习出来就行。

据我所知,很多传统方法,还在采用双目视觉。用计算机去做局部匹配,再根据双目测出的两个匹配的差距,去推算空间另一个点和它的三角位置,从而判断离你多远。

可想而知,深度学习的出现,使得很多公司辛苦积累的软件算法直接作废了。

“算法为核心竞争力”,正在转变为,“数据为核心竞争力”。

技术人员必须进入新的起跑线。

(5)

最后再举个例子。

大家都做过胃镜。尤其胃痛,很痛苦。肠胃镜要分开做,而且小肠看不见。

有一家公司出了一种胶囊摄像头。吃进去后,在你的消化道,每5秒拍一幅图,连续摄像,此后再排出胶囊。所有关于肠道胃部的问题,全部完整记录。但医生光把那个图看完,就需要五个小时。原本的机器主动检测漏检率高,要医生复查。

后来,他们采用深度学习。采集8000多例图片数据灌进去,用机器不断学,不仅提高诊断精确率,减少了医生的漏诊,以及对稀缺好医生的经验依赖。只需要靠机器自己去学习规则。

深度学习算法,可以帮助医生作出决策。

了解完深度学习,接着思考一个问题——20世纪70年代末80年代初,个人电脑突飞猛进时,人工智能的商业化却步履维艰。乔布斯曾这样定义个人计算机的价值——“它是我们思维的自行车”。那么,今天的人工智能呢?深度学习呢?它给我们真正带来的东西是什么?未来,对行业和社会有什么影响?中国公司的机会在哪?

下一篇,我们接着聊。

文章来源于傅盛微信公众号——盛盛GO(fstalk)

本文被转载4次

首发媒体 百度百家 | 转发媒体

随意打赏

深度学习的应用深度学习算法深度学习视频深度学习软件深度学习框架深度学习模型深度学习
提交建议
微信扫一扫,分享给好友吧。