《中国大数据行业报告》发布(附演讲实录+PPT全文)

数据观  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

数据观微信重磅速递

数据观微信小编获悉,近日,在“2018 中国大数据高峰论坛”上,爱分析发布了《中国大数据行业报告》(以下简称《报告》),《报告》称,2017年大数据行业整体市场规模达1000亿,其中行业应用细分市场规模为700亿,是大数据行业最大细分领域,大数据在金融、政务、互联网成熟度最高,爱分析认为,提供整体解决方案的大数据公司机会最大。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   大数据整体市场规模1000亿,细分市场行业应用规模最大

《报告》显示,整个大数据产业分为基础平台、通用技术、行业应用等多个细分市场,2017年大数据整体市场规模1000亿。

细分市场中,基础平台整体市场规模在100亿元左右,通用技术整体市场规模在200亿元左右。行业应用层,大数据在各个行业应用差异较大,应用相对成熟的金融、政府领域市场规模为200亿元。整个行业应用市场规模为700亿。

   大数据在金融、政务、互联网成熟度最高

《报告》显示,大数据在各行各业的成熟度与基础设施、市场规模和应用范围关系密切。

根据调研,金融、政务、互联网这三个行业的IT投入位列各行业前列,随着“互联网+政务”的普及、政务云和政务大数据的落地,政府2017年IT投入超过800亿元,占中国IT总投入的5-10%。金融一直是重IT投入的行业,以银行为例,2017年中国银行业整体IT投资为800亿元,整个金融行业的IT投资突破千亿元大关。

基础设施成熟度同样会对大数据应用落地应用产生很大影响。信息化是大数据的基础,互联网行业信息化程度最高,金融、政务行业在20世纪初已开始进行信息化建设,经历十几年发展,基础信息化已建设完毕。相比医疗、工业等领域,金融、政务和互联网行业结构化数据占比高,数据标准化程度高。

   云计算、大数据、AI、IoT多项技术融合是未来趋势,提供整体解决方案的公司机会最大

《报告》指出,与国外不同,中国市场云计算、大数据、AI、IoT等技术几乎是同时间爆发,企业客户同一时间采购云计算、大数据、AI等产品,企业客户最终目的是通过新技术来实现开源节流,实现这一目标需要多项技术融合,技术边界正逐步模糊。

云计算作为大数据的基础,大幅降低企业的IT硬件成本,将有超过50%的IT预算投入到大数据、AI等应用。AI促使大数据从辅助决策向替代决策进化,使大数据厂商突破工具软件天花板,发展空间放大10倍。在智能客服领域,AI技术的发展使得技术厂商的市场空间由原先的30-50亿提升到300-400亿。

IoT技术的发展补全线下数据和机器数据,给大数据应用带来更加多元的数据,产生更加丰富的应用场景。在营销领域,通过WIFI、蓝牙、摄像头等途径,实现线上、线下数据的打通,形成整个营销闭环,从而实现跟踪用户的全生命周期,提升用户转化率。

多项技术融合促使客户的需求更加多元化、复杂化,提供整体解决方案的大数据公司更加符合未来趋势,在整个产业链占据更重要地位,提供更加深度的场景化应用。

   以下为爱分析高级分析师李喆发布现场演讲实录及《报告》PPT全文:

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   喆: 在看待大数据行业未来趋势时,首先需要关注中美技术路径发展的差异,不仅仅是大数据,还包括云计算和AI等。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   ▊从这张图,我们可以得出有几个结论:

   第一, 我们看到美国的市场是技术驱动,先从底层基础平台成熟,逐步延伸到上层应用。2006年AWS对外进行提供服务,2009-2010年大数据基础平台公司Cloudera、Hortonworks成立,2015年Google开源TensorFlow平台,这些事件促使云计算、大数据、AI进入快速发展阶段。

中国市场更多以应用、政策为主导,云计算行业快速发展的原因是2012-2013年游戏等移动互联网的爆发,2014-2015年,政府出台一系列利好大数据的政策,促使整个行业快速发展。

因此,中国市场应用型的公司发展速度更快。国外已经上市的大数据公司Splunk、Tableau、Cloudera、MongoDB都是基础平台和通用技术层的公司。国内市场发展速度快的TalkingData、同盾科技等公司,都是属于应用型的公司。

   第二, 不同于美国市场每一项技术中间会有一个很大的时间间隔,中国市场云计算、大数据、人工智能这些技术时间间隔很短,几乎是同时爆发。

因此,数据在各个行业的发展是不均衡的,不同行业的渗透率差异很大。同时,大数据行业不能只看大数据,需要重点关注云计算、AI对大数据行业的影响。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   ▊首先,我们看云计算对大数据的影响。

云计算对大数据行业最大的影响是降低了整个基础设施的成本,未来会有50%以上的IT预算会投入到应用层,也就是大数据和AI。IT预算的结构将由左边的正三角形,转变成右边的倒三角形。

以银行为例,不考虑上层应用,美国的银行在IT建设上会领先于中国的银行。根据我们的调研,中国的银行IT投入的70%都是在硬件投入,剩下30%投入是软件和服务。而美国的银行只有15-20%的IT预算投向硬件,更多预算投入到软件和服务。

第二个影响是容器技术的成熟,降低了大数据业务的交付成本,从原来几个月的交付时间缩短到几周。

第三个影响是,随着SaaS渗透率不断提升,更多的数据汇聚到云端,更加便捷的实现数据互通互联。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   ▊其次,我们看AI对于大数据的影响。

AI技术可以帮助大数据突破工具软件的天花板,将市场空间放大10倍,同时还可以降低大数据公司对人力的依赖,提高人均产能。

以智能客服为例,客服软件市场规模是很小的,大概是30至50亿的市场规模,但整个客服市场规模很大。中国的客服人员有300-500万人,按照平均5-6万的人力成本计算,整个客服市场规模超过2000亿。如果其中有15-20%被智能客服替代,整个市场空间就有300-400亿。

但如果厂商只做客服软件,即使加上数据分析等技术,能够提升人员效率,但依然很难触及到人力这部分市场,但通过AI技术,能够实现替代人力,厂商就能切入到这300-400亿的市场。

公安领域,明略数据这样的公司通过深度服务公安客户,形成这个行业的知识图谱,也就是“公安大脑”。形成“公安大脑”后,明略数据在服务其他省市公安局的时候,会大大缩短服务周期,降低公司对人力的依赖,提升业务可复制性。

因为各种技术几乎同时爆发,所以我们判断,多项技术融合是未来的趋势,会大幅提升各个行业的效率。

下面这张图是大数据的业务链条,包含数据源、数据的采集、数据标准化、数据分析和数据应用。可以看出,各项技术其实都会对整个链条产生影响。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

IoT技术,补全了原本缺失的线下数据和机器数据。比如营销领域,之前可以拿到大部分是线上数据,用户点击的广告、网页的浏览行为。IoT的发展,通过WIFI、蓝牙、摄像头等方式,可以监测到用户的线下行为,打通了整个闭环。

用户在线上看广告,官网浏览商品,再到实体店体验、购买,实现线上和线下的融合,有更多方式去提升转化效率。

云计算使数据更容易汇聚,降低数据收集的难度,AI技术增强了数据分析能力。智能财税领域,针对小微企业的代账市场,传统软件不具备自动化和智能化,代账SaaS软件的普及,使越来越多的中小数据汇聚到云端,而依靠机器学习等AI技术,实现自动做账、自动报税。

过去每名会计最多服务20到30家企业,但是依靠SaaS、大数据、AI技术等研发的代账软件,可以服务100到200家,未来还会进一步提升。这会使得传统代账公司的重心会放在获客和增值服务,而非基础做账业务,代账公司的服务半径扩大。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

多项技术融合后,客户的需求会更加多样化、复杂化,因此,我们判断做整体解决方案的公司机会最大。

从产业链的角度看,做整体解决方案的公司更贴近客户,更容易获取标杆客户。

提供单点能力的大数据公司,更多是技术提供方的角色,无法解决客户全部需求,在客户预算中只能占到很小的份额,集成商会占据更大的份额。整体解决方案的公司提供的是自下而上的服务,因此有机会从原来的技术提供商,成为过去集成商的角色。

   ▊这样会带来几个方面的好处:

   首先,大数据公司能够触及的预算会更大。

   其次,可以延伸到其他需求。

美国有一家做虚拟化的公司叫VMware,最早通过虚拟化产品拿下了很多500强的客户,但现在支撑他高速增长的是SDS和SDN业务。

SDN业务是VMware收购了一家初创公司Nicira发展起来的。Nicira被收购的时候没什么收入,但VMware的SDN业务,只花了三年时间就做到10亿美金的收入。抛开技术原因,另一个原因是VMware有很强的客户资源,更有机会把他的新产品推向客户。

   第三,降低获取其他客户的门槛。

企业服务市场,获客具备非常高的门槛,尤其对于初创公司获取客户信任的周期很长。金融大数据公司进入银行市场的时候,可能前期做POC就需要一年的时间。

如果你有一个标杆客户,再去向同类公司进行推广的时候,难度会大大降低。标杆客户具备灯塔效应,不论是服务同体量的客户,还是下沉到腰部客户。

从场景的角度,整体解决方案的公司更有机会把场景做深,提高价值。

零售领域,很多公司从营销做起,但很难切入到库存管理、供应链管理。因为这些公司多数是提供营销工具,不是一个完整的解决方案。整体解决方案公司会从帮助客户建立大数据平台做起,更有机会从前端营销切入到后端业务,通过数据去打通各个环节。

这也是因为当前中国的客户能力还相对不足,直接使用工具的成本和难度都很高。大数据公司需要将业务做重,单纯一个很轻的产品,价值度较低,很难形成壁垒。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

接下来,我们将分享大整个大数据的产业图谱,包括我们对每个细分领域的判断。这张图是我们对整个大数据的划分,从底层基础平台到上层行业应用,分为四大细分领域。

基础平台分为交易型数据库、分析型数据库和围绕这两类数据库的计算引擎。

基础平台往上有两个方向,一个是数据的方向,一个是技术的方向。数据方向有两类厂商,按照是否具备数据源分为第一方和第三方。技术方向是指大数据平台之上,具备通用性的数据处理的技术,包括 BI与可视化、日志分析等。

行业应用更多的是直接面向一个个场景,用大数据技术去解决各个行业的场景去落地的公司。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

这是我们总结的大数据市场规模。市场规模最大的是行业应用,基础平台是市场规模最小的细分领域。

   ▊根据我们的调研,2017年整个中国大数据的市场规模是1000亿,我们测算的逻辑主要分成两类:

   一类是Top Down。 比如,我们测算中国BI领域市场规模,我们首先看全球市场BI的市场规模,全球BI的市场规模大概是180亿美金,考虑到BI在IT投入的比例,中国和全球应该大体一致,中国的比例会略低于全球的市场。全球的IT投入大概是3.6万亿美金,中国的IT投入大概是2.3万亿人民币,因此,我们测算中国的BI市场规模大概是135亿人民币。

再比如,行业应用中的工业大数据,通过我们测算大概是100亿人民币市场规模。我们的方法是通过行业成熟企业的投入比例,去推断大数据在整个工业产值的比例。国家电网2017年营收在2万亿,每年在大数据的总投入是5亿。金风科技2017年营收260亿,在大数据的投入在500-1000万之间,由此可以判断规模以上的企业投入比例大概为1-2%。

   另一类是Bottom Up。 重点看头部公司它的收入和市场份额。基础平台这个市场,我们主要看Oracle,因为它是市占率最高的公司。2017年亚太地区的收入是45-50亿美金的数据,其中数据库的比例大概会占到30%左右,所以是十几亿美金规模,中国市场收入会比这个数据要低,Oracle的占有率是在40%至50%之间。因此我们判断国内的基础平台的市场规模在100亿左右。

再比如AI平台,我们判断AI平台(数据科学平台)这个领域是20多亿的规模,主要是考虑国内市场,这个领域最大的公司是SAS,每年收入30亿美金,在亚太地区的市场份额大概占到10%左右,而他的市占率会在50-60%,因此整个市场规模会在25亿上下。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

从各个细分领域来看,我们还是会去重点关注大数据的行业应用,大数据的最大价值肯定是体现在行业应用。

从政府的大数据发展规划来看,2020年整个大数据市场规模将达到1万亿。但从IT投入来看,2017年IT软件与服务的投入只有1500亿。因此,未来大数据厂商切的主要预算不会来自IT,而是业务预算。只有做行业应用的公司才更有机会拿到业务预算。因此,我们判断,行业应用会是未来最大的细分领域。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

我们重点关注的是金融、政务这两个领域,主要去通过大数据在各行各业的成熟度判断。根据爱分析大数据成熟度模型,我们主要从市场规模、基础设施和应用范围去判断各行业的成熟度,大数据在各行业的渗透情况。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   首先, 通过我们的分析,现在最成熟的是互联网、金融、政务。金融的IT投入肯定是非常大的,银行每年的IT投入就有800亿,加上证券、保险,整个金融IT投入是超过1000亿。政务每年的IT投入大概是800亿。

这两个行业在整个中国IT投入占比非常高。中国2.3万亿IT投入中,有大概1万亿左右是运营商资源。去除掉这部分,金融和政务加起来会占到总投入的20%以上,现阶段大数据投入主要还是来自IT预算。

   其次, 互联网、金融和政务,信息化建设是最完善的,这里的信息化建设不光是基础业务系统搭建,还包括数据的标准化、结构化程度。医疗的基础设施相对完善,IT投入也很高,但我们不认为它会优先爆发的原因,就是数据标准化的问题。

数据业务链条上,现在能走通的就是金融和互联网,医疗领域的数据标准化还在建立当中。数据标准化程度高,才更容易产生深度的应用。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   第三, 金融和政务两个领域的公司,发展最快、体量最大。根据我们的调研,2017年,像TalkingData、同盾科技、百融金服等公司,他们的确认收入都已经超过了1亿人民币,而1亿人民币收入是企业服务公司一个很大的门槛。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

通用技术领域,我们会去关注那些有机会切入到行业应用的公司。BI与可视化、用户行为分析、AI平台等领域,直接面向客户的应用问题,更有机会切入到行业应用。

比如用户行为分析里面的神策数据、GrowingIO等公司,第一个直接的方向是营销大数据,这样以来会从原本工具软件这个比较小的细分市场,跳入到营销市场,而我们知道,整个营销市场是万亿级的市场,占GDP的2-3%。

   ▊数据服务市场,我们也会看它和行业应用的结合,我们判断纯粹的数据交易公司机会有限,第一方平台将逐步崛起,这背后有几个原因:

   第一, 政策方面,2017年安全法的发布,对数据隐私、数据合规性的要求大大提升,这会对第一方数据公司是个利好,但第三方数据公司的业务受到很多限制。行业标杆客户也更愿意与有品牌、合规的公司合作。

   第二, 数据既然要和应用去结合,那么就需要热数据,能够持续不断更新的数据,第一方数据公司更容易实现这一点,因此数据本身就是他们业务不断产生的。对第三方公司来说,汇聚多方数据,持续更新的成本较高。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

基础平台市场,我们认为新需求带来的增量市场更值得关注。基于行业应用、数据分析产生的需求,也就是分析型数据库的市场。

交易型数据库市场进入门槛太高,替代银行等头部客户生产环境下的数据库非常困难,这里面存在着数据丢失等风险,这是大企业很难接受的。而分析型数据库基本都是搭建在离线场景,不存在这方面的风险。

这个市场目前是100亿,我们判断2020年会到150-200亿,主要的增量来自分析型数据库。全球基础平台市场规模是460亿美金,这里面50-60%是交易型数据库,40-50%是分析型数据库,但国内的分析型数据库只有10%的份额,未来渗透率还有很大的提升空间。

《中国大数据行业报告》发布(附演讲实录+PPT全文)

《中国大数据行业报告》发布(附演讲实录+PPT全文)

《中国大数据行业报告》发布(附演讲实录+PPT全文)

   注:本文系「爱分析ifenxi」授权数据观微信发布,编辑:Fynlch王培(微信号:WP1306020480),版权著作权解释权属原创者所有。欲了解更多大数据丨区块链丨人工智能行业相关资讯丨干货丨报告等,可搜索数据观微信公众号(ID:cbdioreview)进入查看。

责任编辑:王培

本文被转载3次

首发媒体 数据观 | 转发媒体

随意打赏

大数据行业前景中国大数据中心如何演讲ppt大数据金融行业中国十大行业ppt下载ppt制作ppt演讲演讲实录
提交建议
微信扫一扫,分享给好友吧。