大数据对业务的价值和作用在哪里?
大数据驱动的客户关系管理
京东作为中国最大的B2C电商,积累了海量的高质量客户数据,结合当前AI的热潮,让京东的未来充满了想象力。那么,大数据的价值到底在哪里?只是统计指标、生成报表支持业务决策吗?和大数据相关的机器学习和算法就是用复杂的数学模型来将某些指标数据算的更准吗?大数据的应用是不是就是提升转化率?大数据对业务的价值和作用在哪里?
1、企业经营面临的挑战
让我们从一个企业的最终表现——财务报表出发,剖析企业业务发展面临的挑战和待解决的问题,从而引出大数据和机器学习的机遇、挑战及其中所蕴藏着的巨大价值。
企业的财务报表,会给出公司在前一阶段经营中的各项指标和重要举措;财报的发布,会极大的影响一个企业的估值。其中的几个关键指标,充分说明了企业经营面临的挑战和业务关注的重点。
• 现金流量
现金流量是第一个指标,展示了企业经营的健康程度。现金流为正,说明企业经营状况健康,有大量现金盈余。现金盈余是由企业的快速销售回款和GMV增长所带来的。
• 利润率
其次是利润率,也就是毛利。说明了企业日常经营是否赚钱。同样的行业里,利润率基本一致。
• 周转率
准确来说是高周转率,是企业尤其是零售企业盈利和获胜的关键。周转率与毛利相乘,得到企业总体的运营利润水平。周转率越高,毛利就会越高。周转率的高低受两个能力影响,企业的库存周转的能力,以及销售的速度。
• 销售速度
销售速度,即销售额的速度,同样受多个因素的影响,一是活跃客户数,一般称为客流量,二是转化率,即销售漏斗的逐层转化。企业会投入大量资源进行广告营销,以提高活跃客户数量,吸引客流量,实现销售额的快速增长。
企业通过不断加大营销的投入和力度,不断发展新用户的数量,不断提升客流量。活跃用户数的快速增长,就产生了销售额的快速增长。
2、营销极限
产生活跃客户的方法,主要是通过各种渠道的营销活动。各种营销活动的策划和资源的投入是 企业 日常经营的重点。包括策划各种促销活动,各种优惠措施,在线或离线的各种广告。
为了销售额不断增长,企业的营销活动会越来越频繁。这种营销活动提升活跃用户是有边界的,即你的目标用户的全体,尤其是有购买能力的人群。通过吸引新客户来保持快速增长,会逐渐达到一个极限;因此在市场成熟后,企业还是要回到老客户的经营和活跃度的提升上。
促销活动数量和强度的不断增长,会不断消耗客户的注意力。客户会收到越来越多的促销信息,并逐渐变得对促销信息不再有敏感;即使优惠力度越来越大,客户的购买欲望却越来越低;甚至不胜打扰,屏蔽营销信息。结果,营销活动的转化率不断降低,效果越来越差,活跃客户数却不再有明显增长。到了这种程度,就可以称其为过度营销。
3、大数据和机器学习
企业的增长,最终是要从外生性的扩张逐渐转变为内生性增长的。精细化的客户经营,需要大数据的支撑,需要机器学习和人工智能的实现,需要对客户的需求和满意度做精准的建模和把握。
当前的企业都会利用大数据,建立客户的需求偏好模型、点击率预估模型、优惠促销响应模型、客户流失预警模型等一系列客户模型。这些模型,在客户价值管理的某些具体应用点上,发挥了重要作用,提升了当期的转化率。
但是,要实现客户价值最大化,还需要从整个公司的视角,充分利用大数据,将目标从短期和具体应用点上的价值最大化,切换为长期的、全局的客户价值的最大化,实现客户和企业的双赢。
4、客户资源价值最大化
如果我们将客户看作一种资源,这种资源的使用是有代价的,其恢复也是有一定周期的。过度频繁使用客户资源来做营销,会导致资源的枯竭。客户的购买需求和对营销信息的注意力质量会不断下降,直至最终耗竭。从而产生客户流失。
作为公司共同资源的客户群,如果没有合理的使用规则,就会产生经济学中的“公地悲剧”效应。即大家都无节制的使用公共资源,从而导致客户资源的耗竭。
解决这种问题,需要进行客户资源成本化,并从总体上合理规划客户资源的使用,实现客户价值的全局最大化。这需要通过大数据和机器学习,用全局最优的分配算法来代替局部的业务规则决策,实现客户服务的精细化。
可以在大数据和机器学习的支撑下,实现以下优化:
• 准确评估客户对公司的粘性和满意度,计算营销投入产出比时考虑客户资源的损耗,以客户价值最大的视角来展开客户营销。
• 对客户资源进行精细化经营,通过 大数据 和机器学习实现对个体客户需求的深层次把握,实现客户与商品的最佳匹配,降低客户注意力资源的浪费。
• 对客户进行全生命周期价值估计,从只关注和优化短期转化率,转变为关注客户长期价值。
责任编辑:王培