常见数据分析模型解析(1)——点击分析
在用户行为领域,通过数据分析方法的科学应用,经过理论推导,能够相对完整地揭示用户行为的内在规律。基于此帮助企业实现多维交叉分析,帮助企业建立快速反应、适应变化的敏捷商业智能决策。结合近期的思考与学习,将为大家陆续介绍不同针对用户行为的分析模型。本文主要介绍点击分析。
点击图与热力图有何差异?
热力图是以特殊 高亮 的形式显示访客热衷的页面区域和访客所在的地理区域的图示,如图。同样,点击图也是特殊高亮的颜色形式的显示。不同的是,点击图是点击分析方法的效果呈现,在用户行为分析领域,点击分析被应用于显示页面或页面组(结构相同的页面,如商品详情页、官网博客等)区域中不同元素点击密度的图示。包括元素被点击的次数、占比、发生点击的用户列表、按钮的当前与历史内容等因素。
图1 点击图 (图片来源于网络)
点击分析模型“分析”的是啥?
点击分析具有分析过程高效、灵活、易用,效果直观的特点。点击分析采用可视化的设计思想与架构,简洁直观的操作方式,直观呈现访客热衷的区域,帮助运营人员或管理者评估网页的设计的科学性。
在追求精细化网站运营的路上,企业对用户点击行为的可视化分析提出了更高需求,理想的点击分析方法主要分析:
1、精准评估用户与网站交互背后的深层关系
除了展示单个页面或页面组的点击图,前沿的点击分析应该能够支持事件(元素)属性、用户属性的任意维度筛选下钻;运营人员可以按照事件属性和用户属性进行筛选,对特定环境下特定用户群体对特定元素的点击进行精细化分析;支持查看页面元素点击背后的用户列表,满足企业网站的精细化分析需求。
2、实现网页内跳转点击分析,抽丝剥茧般完成网页深层次的点击分析;
前沿的点击分析应支持网页内点击跳转分析——在浏览页面点击图时,使用者能够像访问者一样,点击页面元素,即可跳转至新的分析页面,且新的分析页面自动延续上一页面的筛选条件。同一筛选条件下,运营人员可抽丝剥茧般完成网页深层次的点击分析,操作流畅,分析流程简易、高效。
3、与其他分析模型配合,以全面视角探索数据价值,能够深度感知用户体验,实现科学决策。
无法精细化地深入分析,会让网页设计与优化丧失了科学性。点击图呈现用户喜爱点击的模块或聚焦的内容,是数据价值最上层表现。当“点击分析”与其他分析模块配合,交叉使用,将数据和分析结果以多种形式可视化展现,运营人员即可深度感知用户体验。例如,改版后,如何评估新版本对用户体验的影响?一处修改,是否影响其他元素的点击……等等。再如 A/B 测试,反复验证优化效果选择最优方案等。
点击分析应用场景:电商界面的优化与改进;企业官网改版
电商界面的优化与改进——配合实时多维分析,验证方案科学与否
以商品详情页的优化为例,电商产品人员可以 URL 规则建立了一个页面组,并选择任意一个商品详情页作为背景展示点击情况,“点击分析”对于相同结构的网页,如商品详情页、购物页面、博客文章等,提供了统一、便捷的点击分析方式。
该网站中商品详情页的点击图情况
注:图片所涉及的数据,均为模拟业务应用场景下的虚拟数据
通过上图我们可以看到:
用户在该页面频繁地点击商品的图片,和已购买的人数。
显然,用户在购买前希望了解更多的商品信息,尤其是图片、已购买用户的评价,进而决定是否下单。然而,在更深入分析页面时发现,商品图片只有 1 张且不支持查看大图,又无法查看用户评价。通过查看网站的历史数据,每天大约有 50% 的用户来浏览的都是这样的商品详情页。因此为了优化目标页的用户体验,可以:
- 要求商家发布商品时必须上传不少于 3 张照片;
- 支持所有类型的商品详情页都有已购买者的评价露出。
从商品详情页的点击图中,右侧边栏中“我的心愿单”这个按钮被用户,尤其老用户点击率很高。以此为参考,为页面改版找到一些方向:在合适的位置新增“加入心愿单”按钮。
改版后,产品人员再次通过点击分析工具评估效果时发现,“加入心愿单”按钮的点击率达到 30%,而“立即购买”按钮的点击率只下降了 1%,图略。说明这次改版对“立即购买”按钮的点击率的冲击程度不大,并不会影响页面的最终转化。
“加入心愿单”是否对用户转化造成影响?产品人员可通过用户路径“加入心愿单”操作的频率和人数,或者通过留存率判断用户黏性的强弱变化……
通过漏斗分析功能,查看改版后的总体转化率
改版后客户的转化率为 3.17%,可与改版前的转化率相比,若变高,则说明此次是一次比较成功的改版。如此判断“加入心愿单”是否是用户真实存在的需求,是否能对增加用户忠诚度产生贡献。
场景二:企业官网改版——筛选细分访客,页面优化有的放矢
企业官网是企业潜在客户的指路牌。某 To B 企业官网运营人员,根据用户的官网访问时长、用户行为路径、活跃度、注册与否等因素,将用户细分为“单纯浏览者”、“信息收集者”、“购买需求强烈者”三类。 运营人员事先按照自定义规则,将三类访客进行用户分群。接下来,在“点击分析”功能模块中,分别筛选出三类人群,并查看其页面点击情况。下面以“单纯浏览者”、“信息收集者”两类进行介绍。
1.用户群体之“单纯浏览者”的点击分析与优化方法
比如通过点击分析了解到,近 30 天,“单纯浏览者”对官网导航栏的点击情况。通过分析,若发现该类用户群体对“产品介绍”、“视频”点击率较高,这说明“产品介绍”、“视频”是初来乍到的访问者了解企业的“窗口”,而元素内容缺少“亮点”,导致访问者不愿意花时间停留。因此可尝试以下两方面优化:
- 一方面,优化内容。让产品价值、优势、案例等内容尽可能醒目,以快速吸引浏览者注意;
- 另一方面,在导航栏中尝试增加社交因素。如建立论坛、设立产品博客,如此增强访问者对官网的黏性,提高网站的活跃用户数量。
2. 用户群体之“信息收集者”的点击分析与优化方向
运营人员可以通过点击分析了解近 30 天,“信息收集者”对官网导航栏的点击情况,官网运营人员应该帮助该用户群体确定购买意向。例如,“信息收集者”群体对官网导航条中“文档”、“博客”兴趣很高,而行业解决方案的点击较少。事实上,行业解决方案是该类群体值得关注的价值点,由于点击较低,可以尝试将其调整至醒目位置,进行效果对比。
综上,点击分析模型在各行业内数据分析中应用较为广泛,是数据分析重要分析模型。
文/乔一鸭,神策数据运营一枚