大数据产品经理必备基础知识——数据可视化(二)
上篇文章给大家介绍了统计描述图形:分位数图“
大数据产品经理必备基础知识——数据可视化(一)
”,接下来看看剩下的几种常见的统计描述图形。
分位数-分位数图,或q-q图对着另一个对应的分数,绘制一个单变量分布的分位数。它是一种强有力的可视化工具,使得用户可以观察从一个分布到另一个帆布是否漂移。
如下图显示给定时间段内两个不同部门销售的商品的单价数据的分位数-分位数图。每个点对应于每个数据集的相同的分位数,并对该分位数显示部门1和部门2的销售商品单价。
通过上图,在Q1我们看到部门1的销售的商品单价部门2低。换言之,部门1销售的商品25%低于或等于60美元,而在部门2销售的商品50%低于或等于78美元,而在部门2销售的商品50%低于或等于85美元。
一般地,我们注意到部门1的分布相对于部门2的一个漂移,因为部门1的销售的商品单价趋向于部门2低。
直方图,或成频率直方图,出现久远使用广泛。不做赘述。
尽管直方图被广泛应用,但是对于比较单变量观测组,它可能不如分位数图、q-q图和盒方图有效。
散点图,是确定两个数值变量之间看上去是否存在联系、模式或趋势的最有效的图形方式之一。
用于观察点镞和离群点,或考察相关联系的可能性。如下图,对于两个属性X,Y,如果标绘点的模式从左下到右上倾斜,则意味X的值随Y的值增加而增加,暗示正相关,如果标绘点的模式从左上到右下倾斜,则意味X随Y值减小而增加,暗示负相关。可以画一条最佳拟合的线,研究变量之间的相关性。
散点图可以用来发现属性之间的相关性
三种情况,其中每个数据集中两个属性之间都不存在观察到的相关性。
基本的数据描述图形展示(如分位数图、直方图和散点图)提供了数据总体情况的有价值的洞察,有助于识别噪声和离群点,对数据清理特别有用。
常见的统计描述图形就介绍完了,下篇文章跟大家聊聊基于像素的可视化技术,感兴趣的话可以去看看。
以上就是“大数据产品经理必备基础知识——数据可视化(二)”的内容了,如果你还想了解其他相关内容,可以来 产品壹佰 官方网站。
分位数-分位数图,或q-q图对着另一个对应的分数,绘制一个单变量分布的分位数。它是一种强有力的可视化工具,使得用户可以观察从一个分布到另一个帆布是否漂移。
如下图显示给定时间段内两个不同部门销售的商品的单价数据的分位数-分位数图。每个点对应于每个数据集的相同的分位数,并对该分位数显示部门1和部门2的销售商品单价。
通过上图,在Q1我们看到部门1的销售的商品单价部门2低。换言之,部门1销售的商品25%低于或等于60美元,而在部门2销售的商品50%低于或等于78美元,而在部门2销售的商品50%低于或等于85美元。
一般地,我们注意到部门1的分布相对于部门2的一个漂移,因为部门1的销售的商品单价趋向于部门2低。
直方图,或成频率直方图,出现久远使用广泛。不做赘述。
尽管直方图被广泛应用,但是对于比较单变量观测组,它可能不如分位数图、q-q图和盒方图有效。
散点图,是确定两个数值变量之间看上去是否存在联系、模式或趋势的最有效的图形方式之一。
用于观察点镞和离群点,或考察相关联系的可能性。如下图,对于两个属性X,Y,如果标绘点的模式从左下到右上倾斜,则意味X的值随Y的值增加而增加,暗示正相关,如果标绘点的模式从左上到右下倾斜,则意味X随Y值减小而增加,暗示负相关。可以画一条最佳拟合的线,研究变量之间的相关性。
散点图可以用来发现属性之间的相关性
三种情况,其中每个数据集中两个属性之间都不存在观察到的相关性。
基本的数据描述图形展示(如分位数图、直方图和散点图)提供了数据总体情况的有价值的洞察,有助于识别噪声和离群点,对数据清理特别有用。
常见的统计描述图形就介绍完了,下篇文章跟大家聊聊基于像素的可视化技术,感兴趣的话可以去看看。
以上就是“大数据产品经理必备基础知识——数据可视化(二)”的内容了,如果你还想了解其他相关内容,可以来 产品壹佰 官方网站。