中信建投武超则:用人工智能工具提升分析师产能
数字中国战略拉开,资产管理行业如何走向数字化?在投研行业中人工智能辅助投研工具的应用效果与场景是怎样的?数据量需求最大的量化投研行业新发展阶段的产生原因?在近日通联数据主办的的「嗨~AI」资产管理数字化转型峰会上,中信建投研究所所长武超则对此提出了她的看法。
数字化对各个行业都是有深刻影响的。十年前的网络化和信息化,那个时候大家都觉得线上是非主流,现在看线上化是主流。资管行业现在还处在信息化到数字化之间没有到数字化的阶段。数字化本质上需要有一系列的过程:比如说上云、比如企业的数字资产,怎么能让它上来,未来才能基于数据的本身和算力的提升最后走向应用,也就是智能化的阶段。比起消费 互联网 ,资产管理的数字化和智能化程度其实是不高的。全行业都还是在一个过渡的过程中, 金融 行业或者说资管行业,相对而言这两年数字化进展明显开始加速。因为行业特性,即主要还是服务很多机构客户,服务TO C客户的部门相对数字化程度更高一些。数字化最重要的目前指导 投资 作用发生在对我们研究逻辑上的一个补充,或者说是一个辅助决策,提高效率,因为投资是一个相对比较复杂的模型。
我认为像通联数据这样的人工智能辅助投研工具,可能不仅仅是对量化分析师有用,对所有行业分析师都是有用的。本质上,都是带来生产资料和生产工具上的变革。以前分析师使用的是上市公司公告,或者调研,一些传统的数据来源。但是随着基础工具的变化,我们现在和通联有一些数据方面的合作,比如分析师用它的工具对底层的数据进行整理啊,清洗啊,包括一些智能研报的输出。目前现在看,很有效的。首先是效率的提高,对于节约分析师时间是很有用的,可以有效降低人工成本。
第二个我觉得长期看,我们可以用它来满足我们的定制化的需求。我们在投研分析工作中,并不会完全从产品出发,而是从需求出发,反向基于真正大数据来做分析,现在的大数据虽然很全,但是数量太大,不可能一开始就扑进大数据,那么找到有效数据就像大海捞针了,所以对我们的挑战是怎么把这样的大数据用起来。另外,如果研报模型或者底层框架太复杂,输出的东西就是无效的。而人工智能可以持续处理巨量数据,因此我们与通联数据的合作更进一步,将大数据资源与我们现有的框架和研究方法结合起来,产生一些新的研究成果。
量化投研目前正处于一个好的阶段。一方面是整个资管行业正在发生一个非常大的扩容和爆发,我觉得这是基础。如果没有这样一个爆发的话,在过去这个市场容量里,很多主动权益的管理就足够了,量化最合适的还是围绕大规模的资金和资本,比如像ETF这一类的产品。第二个是国内和海外市场的差异性导致的。很多做量化的人都是在美国或者海外,更多的是从海外把模型拿过来,去改进升级。这种办法在初期比较有效,但是当大量的人都在这样做的话,这个东西可能会失效。所以长期看,还是要基于我们自己市场的特点和特色,比如我们也刚刚开始做注册制,包括我们对新股的理解等等,带有中国市场的特色的策略会更有效我认为。最终我觉得做卖方量化的支持,可能更多还是在过程中,或者叫逻辑的输出,包括因子的输出上面,可能我们会有一些优势,因为我们的信息面或者是数据源会更多一些。辅助这些买方去做决策。这块是我们现在定位去做的事情。