GTC2023快手展示视频画质评估算法等多项前沿技术和解决方案
日前,在NVIDIA GTC 2023大会上,多位来自快手的技术专家,展示了一系列前沿技术及解决方案:涵盖了从视频画质提升、数字人直播及互动解决方案,到定制性能优化新框架、针对大型推荐模型的性能优化,以及多模态超大模型在短视频场景落地等多个话题。
快手App每天都要产生数千万条新增UGC短视频内容。用户发布一条视频,只需要几秒钟,增加一些特效,也只需要简单几个步骤。但鲜为人知的是,为了提供更加清晰的画质,每条短视频在触达用户前都经历了重重“关卡”,这背后是快手技术团队持续的工程、算法技术积累。
快手音视频图像算法负责人孙明在《快手视频质量评价和画质增强解决方案》演讲中提到,在一条短视频从生产到消费的整体链路上,与画质相关的主要有拍摄、编辑和服务端处理这三个阶段。同时在下发到移动端的过程中,视频画质仍受制于网络环境、带宽成本、用户端机型等因素影响。
为解决这个问题,快手针对UGC视频特性提出了视频画质评估算法体系(KVQ)和画质修复增强方案(KRP/KEP)。两者相辅相成,大幅提升了消费侧画质清晰度。
如何在有限的算力下尽可能把算法效果发挥到极致,实现降本增效?快手视频质量评价框架使用了AI方法来驱动算法开发。“早期我们建立了大量的内部测试集,发现哪怕在数据较小的情况下,AI算法仍然比市面上的工具好用,所以后面的迭代主要围绕在内容多样性、处理多样性、codec多样性三个问题来解决。”孙明表示。
快手画质修复“秘籍”
现如今KVQ已广泛应用于快手内部多个业务场景中,如全链路质量监控、基于内容的自适应处理和编码、搜索推荐等。同时,在StreamLake业务中,KVQ已经实现 商业 化,并为业内数家知名公司提供服务。
最近几年,前沿技术的革新也逐渐带动了虚拟技术的升级。快手视觉互动技术负责人简伟华分享的《快手 3D 数字人直播及互动解决方案》,介绍了快手围绕3D数字人,基于快手虚拟世界互动平台KMIP和快手虚拟演播助手KVS,在直播、 社交 等领域进行的系列实践。
在针对更深层次的算法与模型优化方面,快手算法引擎专家门春雷在《基于TensorRT的端到端子图优化框架》的演讲中进行详细阐述,详细介绍了为用户提供更便捷服务的迭代技术。
据了解,NVIDIA TensorRT是一个高性能的SDK,用于优化通用模型的推理性能。快手AI预估系统广泛采用 TensorRT 进行加速计算,然而,工业模型中有一些非通用子图,仍存在优化空间。
门春雷介绍,为了优化这些非通用子图,快手技术团队专门设计了一种利用AI编译器优化子图的端到端框架。具体来说,该框架会自动分析和裁剪ONNX-Graph中存在性能瓶颈的子图,利用AI编译器对其进行优化,并生成代码以填充到TensorRT插件中。这样,基于TensorRT的二次开发,能够进一步提升服务吞吐,节省计算资源。
作为头部短视频平台,快手日活用户达3.6亿,日均时长超129分钟。推荐服务在短视频、广告、电商等多项业务中都发挥着重要作用。
这些优化的动作使GPU利用率从20%左右大幅提高到近90%,吞吐量提高了十倍以上,能够帮助平台在成本可控的情况下,把效果发挥到极致,更好地为用户提供优质服务。
ChatGPT热潮下 加速多模态超大模型在短视频场景落地应用
今年以来,ChatGPT持续火爆,让其背后的多模态大模型技术受到更多关注,也为行业带来了诸多AI大模型技术研究热潮。超大模型和超级算力结合加速了技术的应用,大模型已经从自然语言处理扩展到计算机视觉、多模态领域等。
在《多模态超大模型短视频场景落地应用》这一演讲中,张胜卓、韩青长、李杰三位技术专家介绍,为了解决大模型应用中共性问题,快手开展技术攻关,沉淀了通用的混合并行训练、推理优化和模型部署整套解决方案。该方案已在快手的多个场景落地,以较低的资源成本取得了显著的业务收益。
在ChatGPT和GPT-4带动下,AIGC大火。随着AI技术的进一步发展,大模型以及多模态模型的商业化应用将进一步加速。 十年磨一剑,诸如快手等 科技 巨头,将凭借多年提炼的技术“秘籍”,持续赋能亿万用户。快手内部文档请勿外传