AI教父杰弗里辛顿:AI反学习可能揭开人类梦境的奥秘
近日,多伦多大学的教员、谷歌大脑(Google Brain)研究员杰弗里·辛顿(Geoffrey Hinton)发表了炉边谈话。他讨论了神经网络的起源,以及人工智能有朝一日可能像人类一样推理的可行性和意义。辛顿被一些人称为“人工智能教父”,他在过去30年里一直致力于解决人工智能面临的一些最大挑战。
辛顿认为目前的人工智能和机器学习方法都有其局限性。他指出,大多数的计算机视觉模型都没有反馈机制,也就是说,它们不会试图从更高层级的表征重建数据。相反,它们试图通过改变权重来有区别地学习特征。“它们并没有在每一层的特征探测器上检查是否能够重建下面的数据。”辛顿说道。
他和同事们最近转向人类视觉皮层来寻找灵感。辛顿说,人类的视觉采用了一种重建的方法来学习,事实证明,计算机视觉系统中的重建技术增强了它们对对抗攻击的抵抗力。“大脑科学家都同意这样的观点,如果你的大脑皮层有两个区域处于感知通路中,并且相互连接,那么总有一个反向通路。”辛顿表示。
需要说明的是,辛顿认为神经科学家需要向人工智能研究人员学习很多东西。事实上,他觉得未来的人工智能系统将主要是非监督式的。他说,非监督式学习——机器学习的一个分支,从未标记、无法归类和未分类的测试数据中收集知识——在学习共性和对潜在的共性做出反应的能力方面,几乎就像人类一般。
“为什么我们根本不记得我们的梦呢?”辛顿反问道。他认为这可能与“反学习”有关。辛顿说,“做梦的意义可能在于,你把整个学习过程颠倒过来。”在他看来,这些知识可能会完全改变一些领域,比如教育。例如,他预计,未来的课程将更加个性化,有更强的针对性,将把人类生物化学过程考虑进来。
“你可能会认为,如果我们真正了解大脑的运转机制,我们应该能够改善教育等方面的状况,我认为我们会做到的。”辛顿称,“如果你能最终了解大脑发生了什么,它是如何学习的,而不是没有去进行调整适应,取得更好的学习效果,那会令人费解。”他警告说,实现这一点尚需时日。就近期而言,辛顿设想了智能助手的未来——比如谷歌的Google Assistant或亚马逊的Alexa——它们可以与用户互动,并在日常生活中给他们提供各种指导。
来源:新浪VR