ICCV DeepFashion2服饰关键点估计比赛结果揭晓 美图影像实验室MTlab夺冠
近日,ICCV DeepFashion2 Challenge 2019公布了比赛结果,美图影像实验室MTlab凭借其在综合检测精度上的优势,以明显差距斩获服饰关键点估计(Landmark Estimation)赛道的冠军。DeepFashion2 Challenge此次共吸引18支国内外顶级技术团队参与,包括清华大学、阿里巴巴等知名企业及学术机构。MTlab首次参与DeepFashion系列比赛,旨在通过比赛与同行、学者进行深层次的交流,学习并优化目标检测、关键点估计等相关算法,以提升服饰相关技术的性能水平。
据介绍,DeepFashion2 Challenge是基于DeepFashion1和DeepFashion2 公开数据集基础上的计算机视觉领域技术竞赛。今年的比赛分为两个赛道,服饰关键点估计及服饰检索(Clothes Retrieval)。此次美图参与的是服饰关键点估计赛道,服饰关键点估计比赛包含193,000个图像训练数据,32,000个验证集图像数据,63,000个测试集图像数据。比赛任务中包含13个不同的服饰类别,每个类别都有独立的8到37个关键点,共计294个关键点。如何实现同时检测多个类别共294个关键点是此次比赛的难点之一。此外,DeepFashion2包含了各个情况下的服饰图像数据,因此提升模型对服饰角度、尺度、遮盖情况的鲁棒性也是比赛的一大挑战,需要投入大量的研发精力。
在本次比赛中,MTlab团队所建立的模型在综合检测精度上表现出明显优势,该模型可以同时对13个类别的服饰进行关键点估计,相较于多个模型而言,大大降低了算法复杂度以及使用成本。其次,该模型还具备良好的扩展性,通过类别信息的使用,可以一次应对多类别的数据。
MTlab作为美图公司的核心算法研发部门,在计算机视觉、深度学习、增强现实等领域深耕多年,具备强大的研发实力。其中,基于服饰的计算机视觉技术也是MTlab重点研究方向之一。据悉,服饰信息识别技术目前已成功应用在美图秀秀动漫化身功能中,系统可以识别用户上传人像的服装风格,并匹配生成穿着同款服饰的卡通形象。谈及该技术未来的应用前景,MTlab负责人说道:“服饰作为衣食住行的一个重要方面,是一项刚需。因此,与服饰相关的视觉识别技术,有着广泛的应用场景,比如时尚趋势分析、 营销 数据分析等,对商品精准推荐、服饰潮流捕捉等方面都有着重要意义。”
据MTlab介绍,服饰信息识别技术是人工智能算法在服饰电商、内容 媒体 和线下服装零售等行业实现应用落地的基础。对于商家而言,该技术有利于在实现数据智能化管理,平台智能化运营,降低人力成本的同时提高运营效率。而对于用户来说,该技术可以为用户提供个性化推荐、智能搭配、虚拟试穿和一键购物等服务,有效提升了用户的购物体验。
从服装电商、信息检索、个性化推荐到智能试衣,服饰相关技术日趋成熟,为 科技 赋能 商业 增添了更多的可能性。MTlab负责人对此表示:“未来我们会加速服饰相关技术算法的应用落地,将算法与更多的业务结合,对模型进行优化以适配不同的使用场景。同时也将充分利用该模型结构的可拓展性,服务于服饰以外的更多领域。”值得一提的是,美图公司于今年4月正式上线美图AI开放平台,并且已成功服务于诸多业务场景,包括医疗美容、美妆门店、 智能硬件 、移动 互联网 等领域。