2022年有望诞生世界首台类脑超级计算机
出处:OFweek
近日,北京大学 科技 成果发布会上,北京大学计算机科学技术系主任、AI专家黄铁军预测:2022年,世界有望诞生首台类脑超级计算机,其将模仿生物大脑处理信息,处理速度和规模远超同类机型。也就意味着,约20年后尺寸与人脑相当又能精确模拟人脑功能的“类脑机”或将面世。
类大脑计算机的意义
所谓“类脑计算”,就是指仿真、模拟和学习借鉴人脑的神经系统结构和信息处理过程,构建出具有学习能力的超低功耗新型计算系统。未来的计算机,或许真的越来越像人类“大脑”。
类大脑计算机基于硅芯片,未来不会取代今天的计算机,但会增加他们的能力。今天的计算机不仅不会被取代,它们的未来还会被当做协处理器,这意味着他们可以串联并嵌入到智能 手机 和巨大的集中式计算机中组成云。
这种新型计算机一个最大的优点是它具有容忍故障的能力,传统计算机是精确的,但他们由于死脑筋,在遇到失败时就会崩溃,但是新型计算机不一样,它是基于生物设计,因此它的算法是不断变化的,而这也使得系统能够不断地适应并解决故障,从而完成任务。
首台实时模拟人脑机器或4年后出现
目前类脑机研究仍处在起步阶段,其学习、创造能力还远不如人脑。但是随着相关技术的进一步发展,不可否认,类脑机确有达到甚至超越人脑的可能。
当神经形态器件和芯片的精密程度发展到一定阶段后,在信息处理速度上或比人脑快几个数量级,同时在外形上没有了人脑骨骼结构的限制。
距离研制出这样一台“电脑”,我们还有多远的路要走?根据欧盟推出的《人类大脑计划》,到2022年首台实时模拟人类大脑的机器就会出现,约20年后尺寸与人脑相当又能精确模拟人脑功能的类脑机或将面世。
当类脑机的出现必然会给人们的生活方式,尤其是学习方式带来巨大的变革。类脑机可大量减少人类重复性的工作,同时其也会成为创新灵感的来源之一。
装有类脑机的机器人可能在功能上与真人无异,会思考、判断、学习,能够提供更贴心的服务,并代替人从事高智力工作,极大地提高工作效率,促进社会 经济 发展。
但是,未来高智能机器的发展和广泛使用也可能带来失业、被误用等负面影响,相关的伦理、风险研究应逐步展开,相关法律法规建设也应同步完善。
强人工智能时代来临
强人工智能时代会在未来20至30年后到来。人工智能走过百年发展历程,目前已步入新一代AI阶段。强人工智能将能够适应环境,应对未知挑战,具有自我意识,达到并超越人类水平。
类脑机的诞生将拉开强人工智能时代的序幕,而且2022年将有望诞生首台类脑超级计算机。根据欧盟推出的《人类大脑计划》,到2022年首台实时模拟人类大脑的机器就会出现,约20年后尺寸与人脑相当又能精确模拟人脑功能的类脑机或将面世。
目前通用人工智能与人类智能水平的巨大差距。当前的人工智能系统有智能没智慧、有智商没情商、会计算不会算计、有专能无全能。
类脑智能是人工智能的一种形态,是人工智能的终极目标,也是人工智能重要的研究手段。
神经科学、计算机科学、神经网络理论近20年来的长足进步,以及大数据时代对智能计算的需求,使我们今天再次聚焦类脑计算。
类脑计算是一场令人兴奋又望而生畏的艰难挑战,需要组织多学科交叉的大团队研究。期望值过高,又没有达到预期,随之带来的可能是学科发展的低落甚至灾难,使最初的目标成为皇帝的新衣。
类脑超级计算机项目
英国曼彻斯特大学计算机科学学院正在研究类脑超级计算机项目,一台拥有100万个处理器内核和1200个互连电路板的超级计算机,它能像人脑一样运作,是迄今能最准确模拟人脑的超级计算机。这台设备名为“脉冲神经网络架构”,英文名为“SpiNNaker”
它不仅能像大脑一样“思考”,还创造了人脑中神经元的模型,并实时模拟了比其他计算机更多的神经元,它的主要任务是作为模拟部分大脑的模型,如皮质模型、基底神经节模型以及脉冲神经元网络的模型等。
传统超级计算机的连接机制并不太适合实时大脑建模,SpiNNaker有望比其他机器更好地实时建模更大的神经元网络。
不过目前完全模拟人脑不可能,SpiNNaker等机器仍然只能管理人脑所进行通信的一小部分,超级计算机在获得独立思考能力之前还有很长的路要走。
即使拥有100万个处理器,我们也只能达到人类大脑规模的1%。不过,SpiNNaker可以模仿小鼠大脑的功能,鼠脑比人脑小1000倍。
北大视网膜芯片研发
2015年,北京市科学技术委员会启动“脑科学与类脑计算”专项。黄铁军研究团队联合北京大学基础医学院、视觉损伤与修复教育部重点。2017年,仿视网膜芯片一次流片成功。
仿视网膜芯片对传统视频芯片的颠覆主要在于“超速”和“全时”。眼睛是亿万年进化而成的精密器官,信息处理机制优越,但由于生理限制,视网膜发放神经脉冲的频率不可能超过100 Hz。
仿视网膜芯片采用光电技术,发放频率高达40 kHz,“超速”人眼数百倍,能够“看清”高速旋转叶片的文字。
“全时”则是指从芯片采集的神经脉冲序列中重构出任意时刻的画面,这是真正实现计算机视觉的基础。
人类由于具有视觉暂留特性,当影视每秒播放数十幅静止图像时,即可产生连续的视觉感受。然而,长期被误认做智能系统“眼睛”的传统视频摄像头与新一代人工智能并不匹配,视网膜芯片才是真正解决计算机视觉问题的第一步。
超速全时仿视网膜芯片的成功研制,打响了新一代人工智能创新突破的第一枪。这项研究不仅深化了对生物视觉系统信息处理过程的认识,还有望建立其全新的视觉信息表达、编码和分析识别体系,支撑智能机器人、无人机等新一代人工智能产品的发展。
超级计算机的用途
①借助于超级计算机的强大而且快速的运算能力,在实验室实施的亚临界核试验,与真正核试爆的效果是相同的。
②超级计算机可用来认识和改进 汽车 、飞机或轮船等交通工具的空气流体动力学、燃料消耗、结构设计、防撞性,并帮助提高乘坐者舒适度、减少噪音等,所有这些都具有潜在的经济和安全收益。
③对地震的模拟能帮助人类探索地震预测方法,从而减轻与地震相关的风险。
④借助超级计算机预测气候变化,从而减轻气候变化给人类带来的破坏。
⑤生物学已经显示出巨大的计算需求,超级计算机将帮助寻找疾病治疗的革命性方法。
结尾:
异构架构在超算系统构建层面被广泛接受,并且将会成为超级计算机的一个重要发展趋势,人工智能应用有望成为超算的主流应用之一。让机器像人脑一样工作,这已经不是幻想,已经有科学家走在实现它的路上。