Java 6,7,8中的String.intern —— 多线程访问

ImportNew  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  
分享到:


本文由 ImportNew - hejiani 翻译自 java-performance。欢迎加入Java小组。转载请参见文章末尾的要求。

本文是Java 6,7,8中的String.intern —— 字符串池的后续,“字符串池”这篇文章介绍了Java 7和8中String.intern()方法的实现以及使用它的优势,鉴于其篇幅已经很长,所以我写了本文来介绍多线程访问String.intern时的性能特征。

测试程序将从多个线程调用String.intern()。它们将模拟大多数现代服务器应用的行为(比如特定的网络爬虫)。为测试高竞争的场景,这些程序将在新工作站运行,配置是Intel Xeon E5-2650 CPU (8物理16虚拟内核@ 2 Ghz),128 Gb RAM。为利用所有的物理内核我们将创建8个线程。

四个测试程序如下:

  1. 参照程序——前一篇文章中的testLongLoop方法单线程调用String.intern(),用来展示没有任何竞争时运行速度。
  2. 8个线程调用不同字符串的String.intern()方法,该interned字符串用每个线程的线程号作为前缀。该测试展示了String.intern()的同步开销。理论上这是最坏的情况:一个实际应用所做的唯一事情就是多个线程都循环调用String.intern(),这样的情况几乎不可能出现。
  3. 开始时启动第一个线程interning字符串集合。2秒延迟后启动第二个线程interning相同的字符串集合。我们希望对于第一个线程以下的假设为true:str.intern()==str;第二个线程str.intern()!=str为true。这将证明不存在线程本地的JVM字符串池。
  4. 所有8个线程intern相同字符串集合。这种情况更加接近真实的情形——对于JVM字符串池添加和查询字符串的混合操作。但是,如此高的JVM字符串池读竞争也很少发生。

单线程循环调用String.intern()——参照测试

测试一:使用前一篇文章中的testLongLoop方法在单个线程中将字符串循环添加到JVM字符串池。与之前不同,这次我们每一百万字符串输出时间快照。比如log中3000000; time = 0.402 sec这一行表示,当初始时字符串池有二百万字符串时增加一百万花费0.402秒(现在池中有三百万字符串)。测试程序(本文的其他程序也一样)运行设置-Xmx64G -XX:StringTableSize=1000003(JVM字符串池大小)。

1000000; time = 0.362 sec
2000000; time = 0.377 sec
3000000; time = 0.402 sec
4000000; time = 0.434 sec
5000000; time = 0.36 sec
6000000; time = 0.364 sec
7000000; time = 0.351 sec
8000000; time = 0.379 sec
9000000; time = 0.445 sec
10000000; time = 0.487 sec
11000000; time = 0.518 sec
12000000; time = 0.59 sec
13000000; time = 0.695 sec
14000000; time = 0.768 sec
15000000; time = 0.815 sec
16000000; time = 0.873 sec
17000000; time = 0.954 sec
18000000; time = 1.031 sec
19000000; time = 1.081 sec
20000000; time = 1.12 sec
21000000; time = 1.17 sec
22000000; time = 1.194 sec
23000000; time = 1.264 sec
24000000; time = 1.291 sec
25000000; time = 1.352 sec
26000000; time = 1.421 sec
27000000; time = 1.476 sec
28000000; time = 1.514 sec
29000000; time = 1.612 sec
30000000; time = 1.643 sec
31000000; time = 1.695 sec
32000000; time = 1.703 sec
33000000; time = 1.81 sec
34000000; time = 1.854 sec
35000000; time = 1.943 sec
36000000; time = 1.937 sec
37000000; time = 2.0 sec
38000000; time = 2.102 sec
39000000; time = 2.124 sec
40000000; time = 2.212 sec
41000000; time = 2.225 sec
42000000; time = 2.305 sec
43000000; time = 2.344 sec
44000000; time = 2.379 sec
45000000; time = 2.46 sec
46000000; time = 2.557 sec
47000000; time = 2.656 sec
48000000; time = 2.627 sec
49000000; time = 2.629 sec
50000000; time = 2.735 sec
51000000; time = 2.738 sec
52000000; time = 2.823 sec
53000000; time = 2.861 sec
54000000; time = 2.974 sec
55000000; time = 3.027 sec
56000000; time = 3.05 sec
57000000; time = 3.088 sec
58000000; time = 3.161 sec
59000000; time = 3.244 sec
60000000; time = 3.31 sec
61000000; time = 3.327 sec
62000000; time = 3.382 sec
63000000; time = 3.445 sec
64000000; time = 3.524 sec
65000000; time = 3.669 sec
66000000; time = 3.596 sec
67000000; time = 3.673 sec
68000000; time = 3.705 sec
69000000; time = 3.752 sec
70000000; time = 3.81 sec
71000000; time = 3.898 sec
72000000; time = 3.93 sec
73000000; time = 4.0 sec
74000000; time = 4.133 sec
75000000; time = 4.109 sec
76000000; time = 4.193 sec
77000000; time = 4.182 sec
78000000; time = 4.283 sec
79000000; time = 4.349 sec
80000000; time = 4.395 sec

可以看到,结果呈线性增加,这也确认了“字符串池是个固定大小的hash map,每个bucket中包含了字符串链表”的实现。稍后将看到它与多线程结果的比较。

8个线程interning不同的字符串集合

下一个测试将检测JVM线程池的同步限制:每个线程都将创建唯一的字符串集合并在循环中intern字符串。这是个竞争相当高的场景——实际应用中很少出现超过2或3个String.intern()同时调用(这个假设基于现代CPU当前的核数)。

我们使用下面的方法测试多线程。测试#2和#4的唯一不同点在于将要intern的字符串(仔细阅读方法的注释)。

private static void multiThreadedInternTest( final int threads, final int cnt )
{
    final CountDownLatch latch = new CountDownLatch( threads );
    for ( int i = 0; i < threads; ++i )
    {
        final int threadNo = i;
        final Runnable task = new Runnable() {
            @Override
            public void run() {
                latch.countDown();
                try {
                    latch.await(); //start all threads simultaneously
                } catch ( InterruptedException ignored ) {
                }
 
                final List<String> lst = new ArrayList<String>( 100 );
                long start = System.currentTimeMillis();
                for ( int i = 0; i < cnt; ++i )
                {
                    //this line is used in 8 writers scenario
                    final String str = "Thread #" + threadNo + " : " + i;
                    //use the following line for 1 writer, 7 readers scenario
                    //final String str = "Thread #0 : " + i;
                    lst.add( str.intern() );
                    if ( i % 10000 == 0 )
                    {
                        System.out.println( "Thread # " + threadNo + " : " + i +
                            "; time = " + ( System.currentTimeMillis() - start ) / 1000.0 + " sec" );
                        start = System.currentTimeMillis();
                    }
                }
                System.out.println( "Total length = " + lst.size() );
            }
        };
        new Thread( task ).start();
    }
}

这是“8个线程同时写入”的测试用例(JVM设置相同-XX:StringTableSize=1000003 -Xmx64G)。我排除了被垃圾回收影响的行(-verbose:gc)。log的含义也与之前的测试相同,只有一点不同是增加了线程号。

Thread # 6 : 1000000; time = 5.922 sec
Thread # 3 : 1000000; time = 6.037 sec
Thread # 4 : 1000000; time = 6.065 sec
Thread # 0 : 1000000; time = 6.066 sec
Thread # 1 : 1000000; time = 6.075 sec
Thread # 5 : 1000000; time = 6.091 sec
Thread # 2 : 1000000; time = 6.169 sec
Thread # 7 : 1000000; time = 6.288 sec
Thread # 1 : 4000000; time = 4.991 sec
Thread # 0 : 4000000; time = 4.983 sec
Thread # 3 : 4000000; time = 5.067 sec
Thread # 2 : 4000000; time = 5.024 sec
Thread # 4 : 4000000; time = 5.028 sec
Thread # 6 : 4000000; time = 5.052 sec
Thread # 5 : 4000000; time = 5.102 sec
Thread # 7 : 4000000; time = 5.083 sec
Thread # 1 : 6000000; time = 7.012 sec
Thread # 0 : 6000000; time = 7.06 sec
Thread # 2 : 6000000; time = 6.99 sec
Thread # 3 : 6000000; time = 7.09 sec
Thread # 4 : 6000000; time = 7.045 sec
Thread # 6 : 6000000; time = 7.173 sec
Thread # 5 : 6000000; time = 7.16 sec
Thread # 7 : 6000000; time = 7.175 sec
Thread # 1 : 8000000; time = 9.098 sec
Thread # 0 : 8000000; time = 9.157 sec
Thread # 2 : 8000000; time = 9.157 sec
Thread # 3 : 8000000; time = 9.2 sec
Thread # 4 : 8000000; time = 9.222 sec
Thread # 6 : 8000000; time = 9.308 sec
Thread # 5 : 8000000; time = 9.314 sec
Thread # 7 : 8000000; time = 9.332 sec
Thread # 1 : 11000000; time = 12.987 sec
Thread # 2 : 11000000; time = 13.028 sec
Thread # 0 : 11000000; time = 13.063 sec
Thread # 4 : 11000000; time = 13.007 sec
Thread # 3 : 11000000; time = 13.04 sec
Thread # 6 : 11000000; time = 13.238 sec
Thread # 5 : 11000000; time = 13.268 sec
Thread # 7 : 11000000; time = 13.209 sec
Thread # 1 : 15000000; time = 21.826 sec
Thread # 2 : 15000000; time = 22.124 sec
Thread # 4 : 15000000; time = 22.142 sec
Thread # 3 : 15000000; time = 22.144 sec
Thread # 0 : 15000000; time = 22.384 sec
Thread # 7 : 15000000; time = 23.129 sec
Thread # 6 : 15000000; time = 23.228 sec
Thread # 5 : 15000000; time = 23.244 sec
Thread # 1 : 17000000; time = 32.329 sec
Thread # 2 : 17000000; time = 32.488 sec
Thread # 4 : 17000000; time = 32.489 sec
Thread # 3 : 17000000; time = 32.448 sec
Thread # 0 : 17000000; time = 32.603 sec
Thread # 7 : 17000000; time = 32.567 sec
Thread # 5 : 17000000; time = 32.574 sec
Thread # 6 : 17000000; time = 32.791 sec
Thread # 1 : 19000000; time = 37.914 sec
Thread # 2 : 19000000; time = 37.895 sec
Thread # 3 : 19000000; time = 37.827 sec
Thread # 4 : 19000000; time = 38.014 sec
Thread # 0 : 19000000; time = 37.981 sec
[GC 15464352K->15461583K(23223936K), 31.1850310 secs]
Thread # 7 : 19000000; time = 69.329 sec
Thread # 5 : 19000000; time = 69.291 sec
Thread # 6 : 19000000; time = 69.446 sec
Thread # 1 : 21000000; time = 43.171 sec
Thread # 2 : 21000000; time = 43.225 sec
Thread # 3 : 21000000; time = 43.265 sec
Thread # 4 : 21000000; time = 43.175 sec
Thread # 0 : 21000000; time = 43.206 sec
Thread # 7 : 21000000; time = 42.972 sec
Thread # 5 : 21000000; time = 42.983 sec
Thread # 6 : 21000000; time = 43.025 sec

将线程分组来解释该测试结果。比如,下面的小片段表示intern八百万字符串花费将近43秒(每个线程intern一百万字符串),当时jvm池中已有的字符串数量为20M*8=160M(1.6亿)。

Thread # 1 : 21000000; time = 43.171 sec
Thread # 2 : 21000000; time = 43.225 sec
Thread # 3 : 21000000; time = 43.265 sec
Thread # 4 : 21000000; time = 43.175 sec
Thread # 0 : 21000000; time = 43.206 sec
Thread # 7 : 21000000; time = 42.972 sec
Thread # 5 : 21000000; time = 42.983 sec
Thread # 6 : 21000000; time = 43.025 sec

单线程与多线程String.intern测试比较

未被垃圾回收影响的第一组信息为处理字符串数量为11M(一千百万)——对应到单线程情况
为intern字符串88M。简单估算一下。假设单线程时结果线性增加,需要计算单线程时间(84M)作为我们[80M;88M]的単线程用例的平均时间。大约为time(80M) + (time(80M) - time(76M)) = 4.4 sec + (4.4 sec - 4.2 sec) = 4.6 sec。相同情况的多线程模式下增加一百万字符串的时间约为43 sec / 8 = 5.375 sec,可以看到8个并发线程添加字符串到字符串池中仅增加了17%的开销。即多线程写入字符串到池中付出的代价是很小的。

JVM字符串池线程本地化测试

在同步开销很低的情况下,我开始思考JVM字符串池实际上是否是线程本地的?在那种情况下如果我们从两个不同的线程intern相同的字符串我们会获取到两个不同的对象。下面的测试先启动第一个线程intern字符串,sleep两秒后开始另一个相同的线程。我们期望第一个线程中str.intern() == str,因为我们intern一个新的字符串,那么它保存在JVM池中,但是第二个线程中str.intern() != str,因为这个字符串已经在第一个线程中。

这个测试有另一个副作用——某些时刻第二个线程将弥补时间差距,因为JVM字符串池读操作要比写入快很多。

下面是测试代码:

private static void multiThreadedLocalPoolTest( final int cnt ) throws InterruptedException {
    final Runnable task1 = new Runnable() {
        @Override
        public void run() {
            final List<String> lst = new ArrayList<String>( 100 );
            long start = System.currentTimeMillis();
            for ( int i = 0; i < cnt; ++i )
            {
                final String str = Integer.toString( i );
                final String interned = str.intern();
                if ( str != interned )
                    System.out.println( "Thread 0: different interned " + str );
                lst.add( interned );
                if ( i % 1000000 == 0 )
                {
                    System.out.println( "Thread 0 : " + i + "; time = " + ( System.currentTimeMillis() - start ) / 1000.0 + " sec" );
                    start = System.currentTimeMillis();
                }
            }
        System.out.println( "Total length = " + lst.size() );
        }
    };
 
    final Runnable task2 = new Runnable() {
    @Override
    public void run() {
        final List<String> lst = new ArrayList<String>( 100 );
        long start = System.currentTimeMillis();
        for ( int i = 0; i < cnt; ++i )
        {
            final String str = Integer.toString( i );
            final String interned = str.intern();
            if ( str == interned )
                System.out.println( "Thread 1: same interned " + str );
            lst.add( interned );
            if ( i % 1000000 == 0 )
            {
                System.out.println( "Thread 1 : " + i + "; time = " + ( System.currentTimeMillis() - start ) / 1000.0 + " sec" );
                start = System.currentTimeMillis();
            }
        }
        System.out.println( "Total length = " + lst.size() );
    }
};
 
final Thread thread1 = new Thread( task1 );
thread1.start();
 
Thread.sleep( 2000 );
 
final Thread thread2 = new Thread( task2 );
thread2.start();}

测试的输出显示了一些1000以下的interned字符串(至少我这里是的)。之后的输出为空直到线程#1追上线程#0。这个点后面的输出就没有什么意义了。这个测试证明了没有本地线程池(否则线程#1将从开始打印所有的interned值)。

“1写入7读取”测试

最后将测试“1线程写入7线程读取”场景的性能。我们将启动8个线程interning相同的字符串集合。就是说只有一个线程添加字符串到字符串池,而其他线程仅仅从池中查询数据。使用测试2中的multiThreadedInternTest方法。唯一不同的地方是intern的字符串不包含特定的线程前缀。

以下是测试结果。每一百万个字符串输出一行。

Thread # 4 : 1000000; time = 0.807 sec
Thread # 6 : 7000000; time = 1.201 sec
Thread # 2 : 8000000; time = 1.244 sec
Thread # 2 : 10000000; time = 1.639 sec
Thread # 6 : 11000000; time = 1.65 sec
Thread # 6 : 12000000; time = 1.726 sec
Thread # 5 : 14000000; time = 1.588 sec
Thread # 7 : 15000000; time = 1.612 sec
Thread # 6 : 17000000; time = 1.715 sec
Thread # 6 : 18000000; time = 1.711 sec
Thread # 2 : 19000000; time = 1.762 sec
Thread # 3 : 21000000; time = 1.857 sec
Thread # 1 : 21000000; time = 1.858 sec
Thread # 3 : 22000000; time = 1.877 sec
Thread # 6 : 23000000; time = 1.991 sec
Thread # 7 : 25000000; time = 2.052 sec
Thread # 2 : 26000000; time = 2.15 sec
Thread # 3 : 27000000; time = 2.17 sec
Thread # 7 : 28000000; time = 2.145 sec
Thread # 0 : 31000000; time = 2.341 sec
Thread # 2 : 32000000; time = 2.353 sec
Thread # 1 : 33000000; time = 2.392 sec
Thread # 2 : 35000000; time = 2.548 sec
Thread # 7 : 36000000; time = 2.499 sec
Thread # 0 : 37000000; time = 2.532 sec
Thread # 0 : 38000000; time = 2.622 sec
Thread # 7 : 40000000; time = 2.748 sec
Thread # 6 : 41000000; time = 2.768 sec
Thread # 3 : 42000000; time = 2.835 sec
Thread # 0 : 44000000; time = 2.813 sec
Thread # 5 : 45000000; time = 2.979 sec
Thread # 4 : 46000000; time = 2.996 sec
Thread # 4 : 47000000; time = 3.067 sec
Thread # 7 : 49000000; time = 2.976 sec
Thread # 0 : 50000000; time = 3.191 sec
Thread # 3 : 51000000; time = 3.102 sec
Thread # 7 : 52000000; time = 3.214 sec
Thread # 3 : 54000000; time = 3.401 sec
Thread # 4 : 55000000; time = 3.409 sec
Thread # 2 : 56000000; time = 3.471 sec
Thread # 2 : 57000000; time = 3.448 sec
Thread # 6 : 59000000; time = 3.67 sec
Thread # 5 : 60000000; time = 3.797 sec
Thread # 6 : 61000000; time = 3.744 sec
Thread # 0 : 62000000; time = 3.748 sec
Thread # 1 : 64000000; time = 3.921 sec
Thread # 1 : 66000000; time = 4.042 sec
Thread # 4 : 68000000; time = 4.115 sec
Thread # 2 : 69000000; time = 4.167 sec
Thread # 2 : 70000000; time = 4.276 sec
Thread # 7 : 71000000; time = 4.23 sec
Thread # 7 : 73000000; time = 4.38 sec
Thread # 6 : 74000000; time = 4.439 sec
Thread # 3 : 75000000; time = 4.403 sec
Thread # 4 : 76000000; time = 4.414 sec
Thread # 6 : 77000000; time = 4.499 sec
Thread # 6 : 78000000; time = 4.582 sec
Thread # 0 : 80000000; time = 4.706 sec
Thread # 6 : 80000000; time = 4.706 sec
Thread # 1 : 80000000; time = 4.706 sec
Thread # 4 : 80000000; time = 4.706 sec
Thread # 2 : 80000000; time = 4.706 sec
Thread # 3 : 80000000; time = 4.706 sec
Thread # 7 : 80000000; time = 4.706 sec
Thread # 5 : 80000000; time = 4.706 sec

将该结果与第一个测试比较,可以看到这种场景与单线程情形相比开销大约增加了9%。

总结

  • 在多线程代码中也自由地使用String.intern()方法吧。“8写入”场景下与“1写入”(单线程)相比仅仅增加17%的开销。测试中“1写入7读取”场景下与单线程相比增加9%开销。
  • JVM字符串池不是线程本地的。添加到池中的每个字符串对于JVM的所有线程都是可用的,这进一步增加了程序内存消耗。

原文链接: java-performance 翻译: ImportNew.com - hejiani
译文链接: http://www.importnew.com/12452.html
[ 转载请保留原文出处、译者和译文链接。]



相关文章

  • Java死锁范例以及如何分析死锁
  • 10个有关String的面试问题
  • Java中的String对象是不可变的吗
  • 应用ForkJoin——精益求精
  • FutureTask源码解析
  • 基本类型转String
  • Java 1.7.0_06中String类内部实现的一些变化
  • 为什么String类是不可变的?
  • Java多线程面试问题集锦
  • 通过多线程技术提高Android应用性能

随意打赏

提交建议
微信扫一扫,分享给好友吧。