谷歌TPU2代有望取代英伟达GPU?测评结果显示…

IT思维  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

原作:Elmar Haußmann

安妮 Root 编译自 RiseML Blog

量子位 出品 | 公众号 QbitAI

去年5月,谷歌推出了第二代TPU芯片,这是一个自定义开发的深度学习加速芯片,不少人认为有望成为英伟达GPU的替代品。

可事实真的如此么?

在这篇文章中,作者详细对比了谷歌TPU2和英伟达V100的性能。孰优孰劣,一较便知~

谷歌TPU2代有望取代英伟达GPU?测评结果显示…

环境设置

话不多说直接上干货了。下面我们就先比较由四个TPU芯片组成的TPU2组合板与四个英伟达V100 GPU的环境设置的差别。

巧的是,因为两者的总内存均为64G,因此我们能够用同一个模型测试了,还能使用相同的batch size,节省了不少工夫呢。

在这次实验中,我们用相同的方式训练模型,双方需要运行同步数据并行分布式训练。

最后,我们选中了ImageNet上的ResNet-50模型进行测试。它实际上是图像分类的一个参考点,虽然参考实现是公开的,但目前还没有一个支持在云TPU和多个GPU上训练的单一实现。

先看看V100这一边,英伟达建议用MXNet或TensorFlow来实现,两者都可以在英伟达GPU云上的Docker映像中使用。

但实际的操作中我们却发现了一些问题,这要是两种实现不能很好融合多个GPU和产生的大型batch size。

好在我们还有一些新发现,从TensorFlow的基准存储库中使用ResNet-50实现,并在Docker映像中运行它是可行的。这种方法比英伟达的推荐的TensorFlow实现要快得多,只比MXNet实现稍微慢一点(约3%)。这样一来,也更容易在相同版本中用同一个框架的实现做对比。

再看看谷歌云TPU这一边,官方建议用带TensorFlow 1.7.0官方TPU存储库的bfloat16实现。TPU和GPU实现都在各自的体系架构上使用混合精度计算,但大部分张量是以半精度的方式储存的。

一翻研究和对比后……我们终于敲定了实验方案。

对于V100来说,我们决定用AWS上的p3.8xlarge实例(Xeon E5-2686@2.30GHz 16内核,244GB内存,Ubuntu16.04),用4个单个内存为16GB的V100 GPU进行测试。

TPU这边的测试,我们将小型的n1-standard-4实例作为host(Xeon@2.3GHz两核,15GB内存,Debian 9),我们提供了一个云TPU,由4个单个内存为16G的TPU2芯片组成。

方案敲定后,我们又规划了两个对比方向。

一是我们要测试在没有增强过的合成数据上的吞吐量(每秒图像)。这种比较独立于收敛性,保证里了在I/O或数据增强中没有瓶颈bottleneck影响结果。

二是,我们要考察ImageNet上两者实现的精确性和收敛性。

目标,明确,方法,明确。我们迫不及待开始测试了——

吞吐量测试

我们依据每秒合成数据上的图像来测量吞吐量,即在训练数据实时创建、batch size也不同的情况下对吞吐量进行检测。

虽然~官方只推荐的TPU的batch size是1024,但是基于读者的请求,我们还报告了其他batch size大小的性能。

谷歌TPU2代有望取代英伟达GPU?测评结果显示…

△ 在合成数据和w/o数据增强的不同批次上每秒的图像性能

在batch size为1024的情况下,双方的吞吐量旗鼓相当,TPU略领先2%。

当batch size较小时,在双方吞吐量均降低,但对比起来GPU的性能稍好一些。看来,这些batch size真的不是TPU的推荐设置~

根据英伟达的建议,我们还也在MXNet上做了一个GPU测验。

利用英伟达GPU云上Docker映像中提供的ResNet-50实现(mxnet:18.03-py3),我们发现在batch size为768的情况下,GPU每秒能处理约3280个图像。这比上面最好的TPU结果还要快3%。

也正如上面所说的那样,在上述batch size下,MXNet的实现在多个GPU上并没有很好聚合。所以,我们接下来研究的重点就是这就是为什么我们将重点就是TensorFlow的实现。

性价比

上面我们也提到过,谷歌云TPU2一组有四块芯片,目前只在谷歌云上才能用到。

当需要进行计算时,我们可以将它与虚拟机相连。考虑到谷歌云上不支持英伟达V100,所以其云服务只能来自AWS。

基于上述结果,我们可以把数据标准化,从每小时的花费、每秒处理的图片数量、每美元能处理的图片数三个维度进行对比。

谷歌TPU2代有望取代英伟达GPU?测评结果显示…
△ 每美元每秒处理图像的表现

对比下来,谷歌云TPU性价比略高。不过,谷歌TPU目前不卖,只能租。如果你考虑长期租用,或者购买的话,结论就不一样了。

有一点你可能忘了,上面这张表的前提是假定了我们的租期为12个月,所以费用中包含了AWS上p3.8xlarge实例,并且不需要提前支付定金。这样大大降低了价格,还能达到每美元能处理375张图片的不错效果。

其实对于GPU来说,还有更多的选择。比方说,Cirrascale提供4台V100GPU服务器的月租服务,收费大概是7500美元,折算下来是每小时10.3美元。

不过,因为AWS上像CPU、内存、NVLink支持等硬件类型也各不同,如果要更直接的对比,就需要更多的参考数据。其他费用套餐可参考:

http://www.cirrascale.com/pricing_x86BM.php

精准度和收敛程度

除了原始的表现,我们还希望有效验证的计算能力。比方说,实现收敛的结果。因为比较的是两个不同的实现,所以可以预期到结果会有不同。比较的结果不仅仅是硬件的速度,也包含实现的质量。

比方说,TPU实现的过程中应用到了计算密集的图像预处理步骤,并且还牺牲了原始的吞吐量。下面我们也能看到,谷歌的这种选择有不错的回报。

我们用ImageNet数据集训练这些模型,想把图像进行分类。目前,这个数据集中的类别已经细分到了1000种,包含了130万张训练图片,5万张验证图片。

我们在batch size为1024的情况下进行训练,进行了90次迭代后在验证集上对比双方的结果。

结果显示,TPU可以每秒完成2796张图,GPU则为2839张。这个结果和我们上面提到的吞吐量不同,是因为上面我们禁用了数据增强,并用合成数据来比较的TPU和GPU的原始速度。

谷歌TPU2代有望取代英伟达GPU?测评结果显示…
△ 90次训练之后,Top-1 精确值*(只考虑每张图最高的预估)

从上图可以看出来,90次训练之后,TPU实现的Top-1精准度要好过GPU,有0.7%的优势。

虽然0.7%的优势看起来非常微小,但在如此高水平的情况下还有这样的改进非常难,基于不同的应用个,这点改进将对最后的结果有很大影响。

接下来,我们看一下不同训练时期,模型Top-1精准度的表现。

谷歌TPU2代有望取代英伟达GPU?测评结果显示…
△ 在验证集上,两种方法实现Top-1精准度的表现

可以看出,图表中有一段精准度陡增,和学习速率高度同步。TPU实现的收敛表现更好,最后到第86次训练时,准确率可以达到76.4%。

GPU的表现就被甩在了后面,第84次训练后达到了75.7%的准确率,而TPU早在第64次训练时就达到了这个水平。

TPU有更好的表现,很可能要归功于前期的预处理和数据增强。不过我们需要更多的实验来验证这个猜想。

基于成本价格提出的解决方案

我们最终需要考虑的,一是整个流程走下来的时间,二是它需要耗费多少资金。如果我们假设最后可接受的准确率为75.7%,那么可以根据每秒训练速度和既定要求的训练次数,算出来达到这个标准所需的成本。时间方面需要注意,不包括训练启动用时,以及训练期间的模型验证用时。

谷歌TPU2代有望取代英伟达GPU?测评结果显示…

△ 达到75.1%Top-1准确率所需成本 | *表示租期为12个月

上图显示,谷歌TPU从零训练图像分类模型的成本是55美元(且训练时间用了不到9小时)!收敛到76.4%的话成本将达到73美元。

而英伟达V100速度差不多快,但成本会更高,收敛速度也比较慢,不是个性价比高的解决方案~

对了,我们这个结论是基于实现的质量、云的价格来对比得出的。其实还有另外一个维度可以来比较,即算力的损耗。不过因为我们缺乏二代TPU算力损耗的公开信息,这方面的对比先不做了啦。

总结

按我们上述的衡量标准来看,在ResNet-50模型的原始表现上,4块TPU2芯片和4块V100GPU是速度相同。

目前来说,训练ResNet-50时谷歌云TPU的实现用时短到令人发指,且基于ImageNet数据集的图像分类准确度达76.4%的成本只要73美元,说物美价廉可能也不过分~

今天,就酱了~

随意打赏

英伟达gpu谷歌搜索引擎谷歌gpu英伟达显卡谷歌浏览器英伟达驱动谷歌搜索谷歌地图谷歌官网谷歌地球
提交建议
微信扫一扫,分享给好友吧。