一文打尽人工智能和机器学习网络资源

IT思维  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

公众号/大数据文摘

大数据文摘作品

编译: 潇夜、大饼、蒋宝尚

昨天,谷歌刚刚上线的机器学习课程刷屏科技媒体头条(点击查看相关评测)。激动过后,多数AI学习者会陷入焦虑:入坑人工智能,到底要从何入手?

的确,如今学习人工智能最大的困难不是找不到资料,更多同学的痛苦是: 网上资源太多了,以至于没法知道从哪儿开始搜索,也没法知道搜到什么程度。

为了节省大家的时间,我们搜遍网络把最好的免费资源汇总整理到这篇文章当中。这些链接够你学上很久,而且你看完本文一定会再次惊叹:现在网上关于机器学习、深度学习和人工智能的信息真的非常多。

本文罗列了以下几个方面的学习资源,供大家收藏:知名研究人员、人工智能研究机构、视频课程、博客、Medium、书籍、YouTube、Quora、Reddit、GitHub、播客、新闻订阅、科研会议、研究论文链接、教程以及各种小抄表。

一文打尽人工智能和机器学习网络资源

研究人员

许多著名的人工智能研究人员都在网络上有很强的影响力。下面我列出了20个专家,也给出了能够找到他们详细信息的网站。

  • Sebastian Thrun

    http://robots.stanford.edu

  • Yann Lecun

    http://yann.lecun.com

  • Nando de Freitas

    http://www.cs.ubc.ca/~nando/

  • Andrew Ng

    http://www.andrewng.org

  • Daphne Koller

    http://ai.stanford.edu/users/koller/

  • Adam Coates

    http://cs.stanford.edu/~acoates/

  • Jürgen Schmidhuber

    http://people.idsia.ch/~juergen/

  • Geoffrey Hinton

    http://www.cs.toronto.edu/~hinton/

  • Terry Sejnowski

    http://www.salk.edu/scientist/terrence-sejnowski/

  • Michael Jordan

    https://people.eecs.berkeley.edu/~jordan/

  • Peter Norvig

    http://norvig.com

  • Yoshua Bengio

    http://www.iro.umontreal.ca/~bengioy/yoshua_en/

  • Ian Goodfellow

    http://www.iangoodfellow.com

  • Andrej Karpathy

    http://karpathy.github.io

  • Richard Socher

    http://www.socher.org

  • Demis Hassabis

    http://demishassabis.com

  • Christopher Manning

    https://nlp.stanford.edu/~manning/

  • Fei-Fei Li

    http://vision.stanford.edu/people.html

  • François Chollet

    https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en

  • Larry Carin

    http://people.ee.duke.edu/~lcarin/

  • Dan Jurafsky

    https://web.stanford.edu/~jurafsky/

  • Oren Etzioni

    http://allenai.org/team/orene/

人工智能研究机构

许多研究机构致力于促进人工智能的研究与开发。下面我列出了一些机构的网站。

  • OpenAI(推特关注数12.7万)

    https://openai.com

  • DeepMind(推特关注数8万)

    https://deepmind.com

  • Google Research(推特关注数110万)

    https://research.googleblog.com

  • AWS AI(推特关注数140万)

    https://aws.amazon.com/blogs/ai/

  • Facebook AI Research

    https://research.fb.com/category/facebook-ai-research-fair/

  • Microsoft Research(推特关注数34.1万)

    https://www.microsoft.com/en-us/research/

  • Baidu Research(推特关注数1.8万)

    http://research.baidu.com

  • IntelAI(推特关注数2千)

    https://software.intel.com/en-us/ai-academy

  • AI²(推特关注数4.6千)

    http://allenai.org

  • Partnership on AI(推特关注数5千)

    https://www.partnershiponai.org

视频课程

网上也有大量的视频课程和教程,其中很多都是免费的,还有一些付费的也很不错,但是在这篇文章中我只提供免费内容的链接。下面我列出的这些免费课程可以让你学上好几个月:

  • Coursera — Machine Learning (Andrew Ng)

    https://www.coursera.org/learn/machine-learning#syllabus

  • Coursera — Neural Networks for Machine Learning (Geoffrey Hinton)

    https://www.coursera.org/learn/neural-networks

  • Machine Learning (mathematicalmonk)

    https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA

  • Practical Deep Learning For Coders (Jeremy Howard & Rachel Thomas)

    http://course.fast.ai/start.html

  • Stanford CS231n — Convolutional Neural Networks for Visual Recognition (Winter 2016)

    https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA

  • 斯坦福CS231n【中字】视频,大数据文摘经授权翻译

    http://study.163.com/course/introduction/1003223001.htm

  • Stanford CS224n — Natural Language Processing with Deep Learning (Winter 2017)

    https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6

  • Oxford Deep NLP 2017 (Phil Blunsom et al.)

    https://github.com/oxford-cs-deepnlp-2017/lectures

  • 牛津Deep NLP【中字】视频,大数据文摘经授权翻译

    http://study.163.com/course/introduction/1004336028.htm

  • Reinforcement Learning (David Silver)

    http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

  • Practical Machine Learning Tutorial with Python (sentdex)

    https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM

油管 YouTube

YouTube上有很多频道或者用户都经常会发布一些AI或者机器学习相关的内容,我把这些链接按照订阅数/观看数多少列示在下边,这样方便看出来哪个更受欢迎。

  • sendex(22.5万订阅,2100万次观看)

    https://www.youtube.com/user/sentdex

  • Siraj Raval(14万订阅,500万次观看)

    https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

  • Two Minute Papers(6万订阅,330万次观看)

    https://www.youtube.com/user/keeroyz

  • DeepLearning.TV(4.2万订阅,140万观看)

    https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ

  • Data School(3.7万订阅,180万次观看)

    https://www.youtube.com/user/dataschool

  • Machine Learning Recipes with Josh Gordon(32.4万次观看)

    https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal

  • Artificial Intelligence — Topic(1万订阅)

    https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ

  • Allen Institute for Artificial Intelligence (AI2)(1.6千订阅,6.9万次观看)

    https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ

  • Machine Learning at Berkeley(634订阅,4.8万次观看)

    https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg

  • Understanding Machine Learning — Shai Ben-David(973订阅,4.3万次观看)

    https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q

  • Machine Learning TV(455订阅,1.1万次观看)

    https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw

博客

虽然人工智能和机器学习现在这么火,但是我很惊讶地发现相关博主并没有那么多。可能是因为内容比较复杂,把有意义的部分整理出来需要花很大精力;也有可能是因为类似Quora这样的平台比较多,专家们回答问题更方便也不需要花太多时间做详细论述。

下面我会按照推特的关注数排序介绍一些博主,他们一直在做人工智能相关的原创内容,而不只是一些新闻摘要或者公司博客。

  • Andrej Karpathy(推特关注数6.9万)

    http://karpathy.github.io

  • i am trask(推特关注数1.4万)

    http://iamtrask.github.io

  • Christopher Olah(推特关注数1.3万)

    http://colah.github.io

  • Top Bots(推特关注数1.1万)

    http://www.topbots.com

  • WildML(推特关注数1万)

    http://www.wildml.com

  • Distill(推特关注数9千)

    https://distill.pub

  • Machine Learning Mastery(推特关注数5千)

    http://machinelearningmastery.com/blog/

  • FastML(推特关注数5千)

    http://fastml.com

  • Adventures in NI(推特关注数5千)

    https://joanna-bryson.blogspot.de

  • Sebastian Ruder(推特关注数3千)

    http://sebastianruder.com

  • Unsupervised Methods(推特关注数1.7千)

    http://unsupervisedmethods.com

  • Explosion(推特关注数1千)

    https://explosion.ai/blog/

  • Tim Dettmers(推特关注数1千)

    http://timdettmers.com

  • When trees fall…(推特关注数265)

    http://blog.wtf.sg

  • ML@B(推特关注数80)

    https://ml.berkeley.edu/blog/

Medium平台上的作者


下面介绍到的是Medium上人工智能相关的顶级作者,按照2017年Mediumas的排行榜排序。

  • Robbie Allen

    https://medium.com/@robbieallen

  • Erik P.M. Vermeulen

    https://medium.com/@erikpmvermeulen

  • Frank Chen

    https://medium.com/@withfries2

  • azeem

    https://medium.com/@azeem

  • Sam DeBrule

    https://medium.com/@samdebrule

  • Derrick Harris

    https://medium.com/@derrickharris

  • Yitaek Hwang

    https://medium.com/@yitaek

  • samim

    https://medium.com/@samim

  • Paul Boutin

    https://medium.com/@Paul_Boutin

  • Mariya Yao

    https://medium.com/@thinkmariya

  • Rob May

    https://medium.com/@robmay

  • Avinash Hindupur

    https://medium.com/@hindupuravinash

书籍

市面上有许多关于机器学习、深度学习和自然语言处理等方面的书籍,我只列示了可以直接从网上免费获得或者下载的书籍。

机器学习
  • Understanding Machine Learning From Theory to Algorithms

    http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

  • Machine Learning Yearning

    http://www.mlyearning.org

  • A Course in Machine Learning

    http://ciml.info

  • Machine Learning

    https://www.intechopen.com/books/machine_learning

  • Neural Networks and Deep Learning

    http://neuralnetworksanddeeplearning.com

  • Deep Learning Book

    http://www.deeplearningbook.org

  • Reinforcement Learning: An Introduction

    http://incompleteideas.net/sutton/book/the-book-2nd.html

  • Reinforcement Learning

    https://www.intechopen.com/books/reinforcement_learning

自然语言处理
  • Speech and Language Processing (3rd ed. draft)

    https://web.stanford.edu/~jurafsky/slp3/

  • Natural Language Processing with Python

    http://www.nltk.org/book/

  • An Introduction to Information Retrieval

    https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html

数学
  • Introduction to Statistical Thought

    http://people.math.umass.edu/~lavine/Book/book.pdf

  • Introduction to Bayesian Statistics

    https://www.stat.auckland.ac.nz/~brewer/stats331.pdf

  • Introduction to Probability

    https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

  • Think Stats: Probability and Statistics for Python programmers

    http://greenteapress.com/wp/think-stats-2e/

  • The Probability and Statistics Cookbook

    http://statistics.zone

  • Linear Algebra

    http://joshua.smcvt.edu/linearalgebra/book.pdf

  • Linear Algebra Done Wrong

    http://www.math.brown.edu/~treil/papers/LADW/book.pdf

  • Linear Algebra, Theory And Applications

    https://math.byu.edu/~klkuttle/Linearalgebra.pdf

  • Mathematics for Computer Science

    https://courses.csail.mit.edu/6.042/spring17/mcs.pdf

  • Calculus

    https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf

  • Calculus I for Computer Science and Statistics Students

    http://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf

Quora

Quora已经成为人工智能和机器学习的重要资源,许多顶尖的研究人员会在上面回答问题。下面我列出了一些主要关于人工智能的话题,如果你想自定义你的Quora喜好,你可以选择订阅这些话题。记得去查看每个话题下的FAQ部分(例如机器学习下常见问题解答),你可以看到Quora社区里提供的一些常见问题列表。

  • 计算机科学 (560万关注)

    https://www.quora.com/topic/Computer-Science

  • 机器学习 (110万关注)

    https://www.quora.com/topic/Machine-Learning

  • 人工智能 (63.5万关注)

    https://www.quora.com/topic/Artificial-Intelligence

  • 深度学习 (16.7万关注)

    https://www.quora.com/topic/Deep-Learning

  • 自然语言处理 (15.5 万关注)

    https://www.quora.com/topic/Natural-Language-Processing

  • 机器学习分类(11.9万关注)

    https://www.quora.com/topic/Classification-machine-learning

  • 通用人工智能(8.2万 关注)

    https://www.quora.com/topic/Artificial-General-Intelligence

  • 卷积神经网络 (2.5万关注)

    https://www.quora.com/topic/Convolutional-Neural-Networks-1?merged_tid=360493

  • 计算语言学(2.3万关注)

    https://www.quora.com/topic/Computational-Linguistics

  • 循环神经网络(1.74万关注)

    https://www.quora.com/topic/Recurrent-Neural-Networks-RNNs

Reddit

Reddit上的人工智能社区并没有Quora上那么活跃,但是还是有一些很不错的话题。相对于Quora问答的形式,Reddit更适合于用来跟踪最新的新闻和研究。下面是一些主要关于人工智能的Reddit话题,按照订阅人数排序。

  • /r/MachineLearning (11.1万订阅)

    https://www.reddit.com/r/MachineLearning

  • /r/robotics/ (4.3万订阅)

    https://www.reddit.com/r/robotics/

  • /r/artificial (3.5万订阅)

    https://www.reddit.com/r/artificial/

  • /r/datascience (3.4万订阅)

    https://www.reddit.com/r/datascience

  •  /r/learnmachinelearning (1.1万订阅)

    https://www.reddit.com/r/learnmachinelearning/

  • /r/computervision (1.1万订阅)

    https://www.reddit.com/r/computervision

  • /r/MLQuestions (8千订阅)

    https://www.reddit.com/r/MLQuestions

  • /r/LanguageTechnology (7千订阅)

    https://www.reddit.com/r/LanguageTechnology

  • /r/mlclass (4千订阅)

    https://www.reddit.com/r/mlclass

  • /r/mlpapers (4千订阅)

    https://www.reddit.com/r/mlpapers

Github

人工智能社区的好处之一是大部分新项目都是开源的,并且能在GitHub上获取到。同样如果你想了解使用Python或者Juypter Notebooks来实现实例算法,GitHub上也有很多学习资源可以帮助到你。以下是一些GitHub项目:

  • 机器学习(6千个项目)

    https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=✓

  • 深度学习(3千个项目)

    https://github.com/search?q=topic%3Adeep-learning&type=Repositories

  • Tensorflow (2千个项目)

    https://github.com/search?q=topic%3Atensorflow&type=Repositories

  • 神经网络(1千个项目)

    https://github.com/search?q=topic%3Aneural-network&type=Repositories

  • 自然语言处理(1千个项目)

    https://github.com/search?utf8=✓&q=topic%3Anlp&type=Repositories

播客

人工智能相关的播客数量在不断的增加,有些播客关注最新的新闻,有些关注教授相关知识。

  • Concerning AI

    https://concerning.ai

  • his Week in Machine Learning and AI

    https://twimlai.com

  • The AI Podcast

    https://blogs.nvidia.com/ai-podcast/

  • Data Skeptic

    http://dataskeptic.com

  • Linear Digressions

    https://itunes.apple.com/us/podcast/linear-digressions/id941219323

  • Partially Derivative

    http://partiallyderivative.com

  • O’Reilly Data Show

    http://radar.oreilly.com/tag/oreilly-data-show-podcast

  • Learning Machines 101

    http://www.learningmachines101.com

  • The Talking Machines

    http://www.thetalkingmachines.com

  • Artificial  Intelligence  in  Industry

    http://techemergence.com

  • Machine Learning Guide

    http://ocdevel.com/podcasts/machine-learning

新闻订阅


如果你想追踪最新的新闻和研究的话,种类渐增的每周新闻是一个不错的选择:其中大部分都包含相同的内容,所以订阅两三个就足够。

  • The Exponential View

    https://www.getrevue.co/profile/azeem

  • AI Weekly

    http://aiweekly.co

  • Deep Hunt

    https://deephunt.in

  • O’Reilly Artificial Intelligence Newsletter

    http://www.oreilly.com/ai/newsletter.html

  • Machine Learning Weekly

    http://mlweekly.com

  • Data Science Weekly Newsletter

    https://www.datascienceweekly.org

  • Machine Learnings

    http://subscribe.machinelearnings.co

  • Artificial Intelligence News

    http://aiweekly.co

  • When trees fall…

    https://meetnucleus.com/p/GVBR82UWhWb9

  • WildML

    https://meetnucleus.com/p/PoZVx95N9RGV

  • Inside AI

    https://inside.com/technically-sentient

  • Kurzweil AI

    http://www.kurzweilai.net/create-account

  • Import AI

    https://jack-clark.net/import-ai/

  • The Wild Week in AI

    https://www.getrevue.co/profile/wildml

  • Deep Learning Weekly

    http://www.deeplearningweekly.com

  • Data Science Weekly

    https://www.datascienceweekly.org

  • KDnuggets Newsletter

    http://www.kdnuggets.com/news/subscribe.html?qst

科研会议

随着人工智能的普及,人工智能相关的科研会议数量也在不断增加。我只提了几个主要的会议,没列所有的。(当然会议并不是免费的!)

学术会议
  • NIPS (Neural Information Processing Systems)

    https://nips.cc

  • ICML (International Conference on Machine Learning)

    https://2017.icml.cc

  • KDD (Knowledge Discovery and Data Mining)

    http://www.kdd.org

  • ICLR (International Conference on Learning Representations)

    http://www.iclr.cc

  • ACL (Association for Computational Linguistics)

    http://acl2017.org

  • EMNLP (Empirical Methods in Natural Language Processing)

    http://emnlp2017.net

  • CVPR (Computer Vision and Pattern Recognition)

    http://cvpr2017.thecvf.com

  • ICCF (International Conference on Computer Vision)

    http://iccv2017.thecvf.com

专业会议
  • O’Reilly Artificial Intelligence Conference

    https://conferences.oreilly.com/artificial-intelligence/

  • Machine Learning Conference (MLConf)

    http://mlconf.com

  • AI Expo (North America, Europe, World)

    https://www.ai-expo.net

  • AI Summit

    https://theaisummit.com

  • AI Conference

    https://aiconference.ticketleap.com/helloworld/

研究论文

你可以在网上浏览或者搜索已经发布的学术论文。

arXiv.org的主题类别

arXiv 是较早的预印本库,也是物理学及相关专业领域中最大的,该数据库目前已有数学、物理学和计算机科学方面的论文可开放获取的达50多万篇。

  • Artificial Intelligence

    https://arxiv.org/list/cs.AI/recent

  • Learning (Computer Science)

    https://arxiv.org/list/cs.LG/recent

  • Machine Learning (Stats)

    https://arxiv.org/list/stat.ML/recent

  • NLP

    https://arxiv.org/list/cs.CL/recent

  • Computer Vision

    https://arxiv.org/list/cs.CV/recent

Semantic Scholar内搜索

Semantic Scholar是由微软联合创始人保罗·艾伦创立的艾伦人工智能研究所推出的学术搜索引擎

  • Neural Networks (17.9万条结果)

    https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false

  • Machine Learning (9.4万条结果)

    https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false

  • Natural Language (6.2万条结果)

    https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false

  • Computer Vision (5.5万条结果)

    https://www.semanticscholar.org/search?q=%22computer%20vision%22&sort=relevance&ae=false

  • Deep Learning (2.4万条结果)

    https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false

  • Andrej Karpathy开发的网站

    http://www.arxiv-sanity.com/

教程

我另外单独有一篇详细的文章涵盖了我发现的所有的优秀教程内容:

  • 超过150种最佳的机器学习、自然语言处理和Python教程

    https://unsupervisedmethods.com/over-150-of-the-best-machine-learning-nlp-and-python-tutorials-ive-found-ffce2939bd7

小抄表

 

和教程一样,我同样单独有一篇文章介绍了许多种很有用的小抄表:

  • 机器学习、Python和数学小抄表

    https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6

通读完本篇文章,是不是对于如何查找关于人工智能领域的资料有了清晰的方向。资料很多,大多都是国外的网站,所以大家需要科学上网哟~~~

原文链接:

https://unsupervisedmethods.com/my-curated-list-of-ai-and-machine-learning-resources-from-around-the-web-9a97823b8524

随意打赏

人工智能的应用机器代替人工人工智能技术人工智能股票人工智能专业
提交建议
微信扫一扫,分享给好友吧。