资本涌入,公司层出,“AI+医疗影像”为何扎堆肺结节?

亿欧网  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  
资本涌入,公司层出,“AI+医疗影像”为何扎堆肺结节?

人工智能在医学影像探索几年后,各家公司“殊途同归”的集中在了肺结节领域。

肺结节是一种病因未明的多系统多器官的肉芽肿性疾病,这种病变通过医学影像可以观察到。 2017年至今,AI+医学影像领域的大部分公司,业务都涉及AI辅助诊断肺结节项目,公布的检测准确率普遍在90%以上,而且这个数值越来越高。同时,一些创业公司也迅速获得融资,2017年被业内称为AI影像“肺结节年”。

这场火热在2018年持续。3月31日,中国医师协会胸外科医师分会、四川大学华西医院、零氪科技共同组织了一场AI辅助肺小结节诊断体验活动,探讨AI在肺结节领域的应用情景;同日,AI+影像公司视见科技完成6000万元的A轮融资;4月2日,AI+影像公司深睿医疗完成B轮1.5亿元融资,自2017年4月至今的一年中迅速完成3轮融资总计3亿元。在这两家公司提供的服务中,AI辅助筛查肺结节当然是不可或缺的项目。

公开数据多、数据获取相对便利,以及肺结节影像直观、便于观察诊断 的特性,造成AI进入这一行门槛不高。同时, 影像科医生人手不足、影像数据快速增长 ,也为这一细分领域创造了商机。

AI影像“肺结节年” 

胸部CT放射影像技术是肺癌早期筛查的手段之一,AI辅助诊断肺结节就成了相关企业的关注点。

很多创业公司能够提供AI识别肺结节的服务。例如,深睿医疗在2017年的主打产品Dr.WISE CAD医疗影像诊断系统,主要应用于肺结节的检测,准确率98.8%;图玛深维对肺结节的检出敏感性为96.5%,肺结节产品已经和国内数十家企业建立合作关系;汇医慧影AI检测肺结节,准确率在95%以上;推想科技官网显示,该公司的智能X线辅助筛查产品在肺结节检测上表现突出,在合作医院试用过程中检测出数例险些被遗漏的肺癌病例。

AI诊断肺结节领域,还有跨界而来的创业公司。例如,2016年进入医疗行业的依图科技,此前以提供人脸识别技术为主业;在实际使用5个月后,浙江省人民医院放射科与该公司联合训练出来的肺结节计算机智能检测系统,计算机肺小结节的识别率就已经超过90%,准确率达到95%。

上述创业公司,均在2017年或2018年初取得不同程度的融资进展。

肺结节领域也从不缺少大公司及上市公司的身影,而且均在争相刷新行业纪录。2017年7月,由阿里健康研发的医疗AI“Doctor You”公开发布,其对外展现的便是CT肺结节智能检测引擎在远程诊断的应用场景;2017年8月,科大讯飞在国际权威的医疗影像大赛LUNA(肺结节智能读片)上,获得平均召回率92.3%的检测效果,刷新当时世界记录;2017年9月,LUNA的排行榜上,复星星际大数据(FONOVA)以“假阳性筛查”平均召回率0.966的分数刷新纪录;2018年1月,LUNA公布结果显示,中国平安集团旗下平安科技的智能读片技术,分别以95.1%和96.8%的精度刷新了“肺结节检测”和“假阳性筛查”的世界纪录。

在科大讯飞医疗总经理陶晓东看来, 各家公司的准确率相近,其实从某种意义上来讲,反映出来的是领域内很多企业的创新能力不够 ;此外,其他领域数据来源的限制,以及算法及监管因素等限制,使得很多公司都选择了相似的领域。

临床需求有“痛点”

“现在大家所选择的领域基本上都差不多,因为肺结节这块公开域的数据最多。”陶晓东说。

图像识别是深度学习等人工智能技术最先突破的领域,目前AI+医学影像在国外已有成熟且公开的算法及相关的试验数据。

阿里健康人工智能实验室主任范绎对《每日经济新闻》记者表示,从数据角度看,无论是学术界还是工业界,在肺结节领域的相关积累都比较早。万里云医疗信息科技(北京)有限公司CEO黄家祥介绍称,在肺结节领域,有很多数据集可以直接下载,国外一些研究机构也有公开数据,阿里云的天池也提供数据集下载,渠道相对较多。

从数据基础上来讲,人工智能需要基于大量的数据进行深度学习以后,才能不断完善和应用。心医国际相关人士对记者表示,多年累积的经医生、专家判读的医学影像数据,为人工智能的学习提供基础。

神经系统、腹部的组织影像学表现则相对复杂,尤其是腹部的脏器较多,黄家祥表示,且正常组织与大多病变组织密度接近,数据分析识别难度系数高一些,所以很多企业一开始都会选择在肺结节领域入手。

通江资本董事总经理施小平亦向记者表示,在肺结节等方向的AI影像技术发展较快,是因为肺结节较为直观测量、便于观察诊断,可以说肺结节AI影像是一个提升AI影像技术极佳的切入点。

“从医疗角度看,肺部是影像拍摄量最多的部位,而对结节的审查是肺部看片的核心诉求。”范绎说。

数据显示,目前我国医学影像数据的年增长率约为30%,而放射科医师数量的年增长率仅为4.1%。 放射科医师数量的增长远不及影像数据增长。这个现象意味着放射科医师在未来处理影像数据的压力会越来越大,甚至远远超过负荷。

《2018年医疗人工智能技术与应用白皮书》认为,人工智能辅助诊断技术应用在某些特定病种领域,将大幅提高医疗机构、医生的工作效率。

心医国际相关人士表示,我国影像检测普及度高,影像诊断医生增长速度尚不能满足市场需求,医生平均需要花费10到15分钟来进行有效的诊断和报告,长时间读片会出现视觉疲劳,容易造成漏诊,AI因此被给予巨大的期望。

往期精彩文章回顾:

盘点丨中国人工智能大健康领域最具洞察力投资机构TOP10

首发丨联医医疗连续完成A+轮和B轮融资,融资规模超1.1亿元

独家首发丨康夫子获晨山基金A+轮数千万元,将用于医疗人工智能的研发

人人都谈的“AI+医疗”,到底包括哪些落地应用?

跳槽季?转型季?药企高管纷纷出现变动究竟为哪般?

随意打赏

人工智能影像ai医学影像idg资本华兴资本红杉资本注册资本高瓴资本ai影像资本涌入
提交建议
微信扫一扫,分享给好友吧。