天猫音箱虽成百万爆款,阿里AI Labs的AI生态仍在路上

亿欧网  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  
天猫音箱虽成百万爆款,阿里AI Labs的AI生态仍在路上

2017年11月,在双十一晚会媒体中心外的科技展示区,我买了一副耳机。

买这副耳机实属偶然。当时,为了给我们「提供更多的写作素材」,阿里特意在可容纳几百名记者的直播间外,搭建了大大小小与 新零售 密切相关的「体验样板间」。其中,就有一个方便我们体验无人支付流程的简易版天猫超市。当然,你只能真的买了东西才能进入无人支付环节。

超市里东西不多,我到处转了转,发现除了各种天猫与淘公仔式样的毛绒玩具、挂坠与杯子,就只有耳机相对实用一些了。恰好阿里工作人员也在旁边适当地推销了几句:

「这是我们自制的,都是在内部销售,质量挺不错。」

最后,我花172元买下这副无线蓝牙耳机,顺利通过了手机全程揣在裤兜里的无人支付环节。然而直到现在,我对无人超市的体验几乎没了印象,却对这副耳机「念念不忘」。

因为实在是,难用到令人发指。

即便是入耳式设计,走路不到5秒也会掉出来;作为无线耳机,蓝牙连接很多时候不听使唤;挂脖子的耳机线走几步就滑下来…

这就是我对阿里硬件水平有着严重顾虑的源头事件。

也让我对阿里唯一开发消费级AI产品的实验室——阿里 AI Labs 的能力,保持了审慎的态度。

一个被称为实验室的部门,一台价格便宜的音箱,再加上「阿里」的title,很难不让人想到大洋彼岸早在2011年就开始密谋Alexa(智能语音助手)与Echo(音箱)的亚马逊。

「很明显,亚马逊从来都是一个商业风向标。他们从2014年就开始卖Echo了,甚至到2015年还没打开局面,但是却让很多科技公司闻到了不一样的味道。」一位智能耳机创业者感慨。

与2017年音箱市场百花齐放,每家与技术沾边的公司恨不得都要做一款音箱的格局全然不同,2014、2015年入局的玩家量少,且步伐小心翼翼。

阿里就是这群嗅觉敏锐的早期试探者之一。但由于当时没有明显的市场说服力,2015年中旬,阿里选择了较为保险的入场方式——合作。

2015年4月,阿里成立智能生活事业部,让时任总经理的浅雪带着百人团队主攻软件平台,而硬件部分,自然是合作伙伴来承担。

就是在这种模式主导下,三个月之后,阿里分别与飞利浦及漫步者共同合作推出智能音箱「小飞」与「MA1/3/5」,迅速进入了市场。

而结果,可想而知(在当时,无论是市场,还是产品的设计与AI技术都不够成熟)。

或许正是由于几年前那些不算顺畅的 智能硬件 合作经验,让2017年重新出山带队阿里AI Labs的浅雪毫不犹豫地表态:

「合作是个必然的选择项,但安卓思路并不靠谱。只有亲手试试,才知道它究竟存在什么样问题。」

坦白讲,不管是跟风、经验教训,亦或是选择2017年市场抬头之际抓住风口再次出击,对于一家商业公司,要寻找更多收益机会,无疑需要更加全面地增加与用户的「接触点」。

而对比此前各种各样由第三方制造,许多只是名字冠以「天猫**」的硬件产品(以天猫魔屏为例,其制造商标注为深圳市橙子科技公司), 天猫精灵 的诞生其实让阿里显得有诚意了不少。

这一次,硬件设计团队成为了AI Labs极为重要的一部分,产品经理通过各种渠道「回收」用户意见,整个软硬结合的流程通畅了不少。

而与此同时,他们也承受了双十一销量拔高后,用户的花式吐槽以及大规模量产带来的质控与供应链压力。

这到底是不是一个优秀的实验室?很难说,因为产品还在被市场持续考验中。但有一点可以确定:

这是一个有故事的实验室。

「接地气儿」并不只是说说

随着Echo逐渐被市场接受,亚马逊硬件实验室曾被爆出不少有意思的组建经历。

譬如由于浑身散发的「生意人」气味儿太浓,与Google相比,发展史上研发人员的地位也不算太高,因此在公司决定为Alexa项目寻找人才时,傲娇的技术大牛们都纷纷表示嫌弃。

总之就是:招人挺难的。从学术圈走出来的科学家们都会优先选择提供良好研发氛围的企业。

因此,亚马逊采取了连续性收购策略——人招不来,那我就买下公司。

专攻语音文本转换的Yap,开发语音助手的Evi,以及语音交互技术供应商Ivona在2012年前后被亚马逊陆续收至麾下。

对比起步艰难的亚马逊,也许有iDst(数据科学与技术研究院)、城市大脑在前,也许出手颇为豪气,总之AI Labs科学家们的「就位」速度十分可观。

AI Labs成立不久,根据LinkedIn提供的资料显示,2017年3月,前新加坡南洋理工大学终身教授王刚就已经加入AI Labs。

又隔5个月,微软亚洲研究院主攻自然语言理解与知识图谱的科学家聂再清与Google前Tango及Daydream项目负责人李名扬也被阿里AI Labs成功挖角。

迅速的动作,在很大程度上证明了阿里想拼命转换身份的决心。更直白来说,科学家的加入,从营销角度来说也大大增加了外界对阿里AI产品的可信赖度。

「现在即便抢人很难,但实验室和科学家就是大公司标配。不这样弄都不好意思说你搞AI。」一位AI猎头这样告诉我。

然而,当科学家决心踏入行业,特别是商业氛围相对浓厚的阿里,自然而然需要迫使自己主动作出改变。而这也正是我们认为阿里AI Labs最吸引人的地方:

研发专家、产品经理、淘宝店客服。消费级产品的属性,让这个部门的技术人员具备了三重身份。而实验室的科学家们,也变成了我见过的最接地气儿的一群学术人。

在2017年10月接受机器之能的采访中,当听到我们在评测天猫精灵过程中遇到不少问题后,聂再清立马掏出手机,这位入职AI Labs不到5个月的前微软科学家当场一条一条记录下来:

「太好了太好了,我正好去跟技术和产品经理沟通一下,有技术问题得赶紧解决。」

而与聂再清几乎同时入职的李名扬,由于年纪很轻,看起来更像90后,略显呆萌。

不知道是不是因为在Google有着视觉方向的项目研究经历,他对色彩极为敏感。

在接受采访时,他对我五彩斑斓的键盘贴纸产生了浓厚的兴趣,我们还特此围绕颜色唠了几分钟嗑,并由此借题发挥转移到了计算机视觉技术应用在音箱产品上的几种可能性。

「给音箱带摄像头的确是个方向,但具体产品形态我可不能告诉你。」

与聂再清的研究风格截然不同,王刚喜欢自己给自己找难题,还喜欢把难题用段子呈现出来。

「你问我难点在哪里,语音识别、自然语言理解,再到后面的命令执行,哪一个环节都有难点。但对我来说,最让人恼火的语言理解问题,」他在接受采访时,迅速开启了「段子」模式,

「不是有句话嘛,『大学里有两种人不谈恋爱:一种是谁都看不上,另一种也是谁都看不上』。

每个字重音和语气不同,意思千差万别。自然语言这种模糊性,让我们在这一块做了不少研究」

因此,他更喜欢呆在电脑前写写画画,一直在测试与训练不同的深度学习算法,又在这个基础上进行各种调参与优化。

这就好比面前摆着一口大锅,为了煮出一锅味道不咸不淡的鲜美鸡汤,火候与料包都需要反复调配,才能获得恰当的比例。

就是在这种训练-调试-训练-再调试的反复状态下,他带领的团队在短时间内设计出了一些独有的自然语言理解的深度学习网络,这些网络在一些标准的设计基础上超越了国际上以前的方法。

很显然,这些术业有专攻,有着产品经验的科学家,正在模糊实验室里技术研发和产品开发之间的界限。

他们仍然要看论文、发论文,带着技术队伍去「打国际比赛」,这是公司保持自己不被新趋势所抛弃的必然举动。

但一个事实可能会让你难以想象——双十一当天,天猫精灵旗舰店的大部分客服的身份,其实就是这群科学家。

甚至有一位技术人员,还因为在短时间内成功卖出好几万台音箱,被评选为当天的「销售明星」。

「他们学什么都很快。像『么么哒,亲』这些术语,简直是信手拈来。」浅雪在描述双十一当天科学家作战状态时,把他们的大脑比作成「天然的深度学习网络」:

「你如果不在现场,根本不会想到,他们竟然具备高超的推销技巧,可以针对不同用户用不同的话术引导下单。我还感慨果然都是全方位人才。」

在双十一销量突破100万后,急剧增长的除了天猫精灵APP下载量与用户活跃数,还有各种各样的用户反馈。

因此,科学家们的日常又变成了时不时去淘宝和其他网上销售渠道刷「用户反馈」,一有用户的吐槽,就迅速截图扔到产品群里。

「吐槽和差评对普通卖家是件坏事,对我们来说,就是与其他竞品的最大优势。卖的少的厂家会极其羡慕我们。」

问题「倒逼」产品,技术决定产品

在我们与各种各样科学家们广泛接触的过程中,很多时候会出现由于问题浅显,科学家搪塞回答,甚至不屑于回答的尴尬场景。

这很正常,外行与科学家之间,总会隔着上百篇论文与上百个算法模型。

因此可以想象,当一位科学家有着亲和态度的同时,也兼具极佳的「将技术转化为通俗语言」的能力是多么难得。

而AI Labs的科学家们,就擅长用「产品吐槽倒推技术」的方式,解释了软硬结合过程中的技术难点。

举个简单例子。

由于天猫精灵的很多回复不够精准,当我们提出「这种状况是否跟知识图谱技术做的不好有关联」时,聂再清老师在用实例进行问题还原的同时,也把这项技术与它的作用阐释地通俗易懂。

「想听周杰伦的歌,但喊一声『想听周董的歌』却得不到回应;或者问『范冰冰是谁』,再接着问『那他男朋友呢』?音箱回答不了。这里面都会涉及到知识图谱构建的不完善。

「知识图谱简单理解,就是给这些名词建立联系,把人物关系都理顺了,跟家谱差不多。你可以把它当做一种管理数据的方式,建立起一整套结构明晰的数据库。」

假如建立一个完善的图谱知识库,当用户在问音箱一个问题时,它就不会根据你的关键词去给网页排名,而是在这个数据被理得很顺的库里找答案。锁定的信息更少,当然答案也会更精准。

「但精准的结果不是一个知识图谱技术就能实现的。如果语义分析做的不好,让计算机把『周杰伦的歌』错误理解成『周杰伦是谁』,或者说资源库里根本没有周杰伦的歌,那知识图谱技术有了也白搭。」他提醒道,

「后者更像是一种助燃剂,而不是最重要的工具。」

此前,聂再清教授主攻的便是知识图谱与NLP技术,也曾做出名噪一时的微软AI产品「人立方」。因此,我们是否可以这样推测:

科学家们擅长的领域,可能恰恰是未来天猫精灵的升级方向与下一个产品的基础形态。

譬如,李名扬在Google期间便主要负责AR/VR技术领域的产品研发,对Slam导航技术深有研究。进入阿里后,他曾明确向我们表示,此后的工作方向与计算机视觉及多传感器融合有着密切关系。

因此不难猜测,在AI Labs规划推出的消费级硬件中,将会涉及与导航定位技术密切相关的产品,譬如 机器人 ,甚至是 无人驾驶 。此外,AR产品也极有可能迅速问世。

实际上,这个疑问也曾间接得到过聂再清的默认。他在介绍团队内部不同的研发工作时,便提及了「自然语言理解、道路规划以及AR」这三个方向。

至于AR产品,甚至是增加AR功能的二代或三代音箱会不会出现,浅雪只说了4个字:

「敬请期待。」

百万销量背后的最大问题,恰恰不是AI

在竞品眼中,作为天猫精灵创造百万销量奇迹的基础,阿里零售平台为其开启的「绿色通道」着实是让人眼红。

「没人不知道双十一吧?想想当天去买买买的人有多少!而且天猫和淘宝app都把天猫精灵放在了首页和电器专场最显眼的位置,你想看不到都难!」另一家国内知名音箱厂商的营销人员颇为嫉妒。

而在算法工程师眼中,AI Labs最幸运的事情,莫过于在音箱销量破100万大关后,将有机会享用源源流入的用户活跃数据。

比起小冰与Siri很多无意义的插科打诨,这绝对是实打实的高质量数据,每一份都来自用户最真实的应用场景与需求。

如果说之前音箱市场的各类竞品还都半斤八两,那么数据方面的差异通常被视为拉开差距的开始。这不仅仅是为了升级产品,还关系到底层技术平台质的飞跃。

显然,对于实验室的科学家们来说,这是让他们最为兴奋的事情。

据内部透露,其机器学习的训练效果有了大幅度提升,有利于对天猫精灵背后的语音开发者平台Aligenie进行持续完善。

但从用户的视角来看,100万是一个极具争议的数字。而这里面爆发出的问题,几乎与 人工智能 技术无关。

有人说,即便活跃用户数在短时间内有大幅上升,但这些用户最终能够留存多少,就要看产品本身了。

值得注意的是,双十一这个销量爆发期,恰恰是天猫精灵用户群身份发生质变的分水岭。

根据官方提供的数据显示,在双十一之前,天猫精灵的用户多为科技爱好者与智能硬件发烧友;而在双十一过后,普通消费者数量后来居上。

这些人身在圈外,受各种广告宣传影响对人工智能产品有着一定的预期,但试用结果导致的心理落差往往要大过「早就心里有点谱」的圈内爱好者们。

因此,双十一结束后,与数据同时涌来的,是各种各样的用户反馈。有好评,也有大量口水。

在这些负面评价中,除了对天猫精灵各类功能实用性(譬如购物)与交互体验方面的「常规性吐槽」,另有一个方面的集体差评引起了我们的注意:

作为一个智能家居中枢控制器,在生态壁垒的约束下,其可连接的电器范围,甚至还不如一个不到60块的红外万能遥控。

如果说「人机交互」凸显的是技术能力,那么「智能中枢」除了技术,也涉及到厂商的智能生态战略。毕竟在他们眼中,后者约等于「下一代人机交互的入口」。

但讽刺的是,大小公司一边把构建生态挂在嘴边,一边把生态壁垒带来的麻烦全都留在了用户体验环节:

天猫精灵与小米电灯都是智能家居,却不可能连接在一起,因为连接协议互不兼容;而天猫精灵与美的空调倒是可以连,但你必须买两家公司指定的智能合作款。

这是一种当下智能中枢控制器最为常见的尴尬境遇。

为了越过壁垒,聪明的商人们用了一种更加巧妙的方式——再另外制造一个可连接智能音箱的万能红外射频遥控。

只要遥控器的红外编码库数据齐全,就可以利用这个遥控器打开客厅内任意一款由红外控制的电器,譬如电视和空调,不是智能的也没关系。

也就是说,你可以用天猫精灵控制这个红外遥控器,然后再间接控制家里的普通电器。

听起来很不错,但请注意,红外不能穿墙,要想控制所有房间的空调,你需要每个屋子买一个遥控器。

此外,即便原理听起来没差错,但实际使用过程中,通常会出现「命令滞后」「感应范围太小」「信号太弱」「只能控制开关,不能调节温度」等一连串问题。

很显然,市场以为多一个环节就能解决生态壁垒的问题。

但结果却是,除了音箱的「中枢」内涵逐渐变得形同虚设,多一层设置,意味着又多了n种麻烦。

这家可连接天猫精灵的万能遥控器被很多人吐槽

此外,摆在AI Labs眼前的一个事实是,100万是他们当时所能达到的供货极限。

双十一期间我曾下过一单,排号大约是在第56万左右。而这台音箱的最终送达时间已经过12月中旬了。

据浅雪透露,100万是他们犹豫再三后调高的最上限。用户高涨的购买热情对应的,是产能不足与供应链的不完善。

这是作为一个硬件实验室此前从未预料到,也没有处理过的事情。

「我们几乎买光了市面上所有的功放芯片,招标的几家工厂都在夜以继日地赶工,但产能还是相对不足。这应该是整个音箱市场此前都忽视的一个问题,由于市场太新,此前根本达不到如此高的量级。」

除了用户体验问题,99元的低廉促销价格尽管激发了普通用户的购买力,那么以后呢,重新回复正常价格后,用户的心理承受预期显然不会停留在原来的价位上。

降价在很多时候是一种有效的策略,譬如,亚马逊为了压制对手Google Home,就频频采取降价策略,成效斐然。

但我们却忽略了两点:前者有强大的生态覆盖面、丰富的音箱产品线与庞大的技能商店。

曾据一位不愿透露姓名的音箱厂商透露,99元的价格可能连硬件都买不到。而显然,竞品们也使出了浑身解数:69元、49元(你狠我更狠),以及饥饿营销。

因此,当成本消耗逐渐达到极限时,如果不在关键时刻开展后续商业服务,例如推荐广告与技能商店,那么很可能最终变成帮后续竞品「教育了市场」的牺牲品。

Skill Store

参照发展时间线,亚马逊Echo从诞生、成长,再到引爆市场,比国内跟风者们多用了整整三年时间。

除了数据积累与技术层面拉开的巨大差距,其后续商业服务能力也让人望尘莫及:

多达几万种技能的Echo商店,在某种程度上可以被视为苹果或安卓的应用商店。

尽管亚马逊还没有规划未来如何与商店内的技能开发者进行分成。但在2017年,亚马逊却正式颁布了基于Alexa的技能收费制度,受欢迎的技能可以通过平台向订阅用户收取费用。

既然收费制度都设立了,那分成还会远吗?

很明显,国内外市场正处于一个产业生命周期中两个截然不同的发展阶段。

在各品牌音箱技能数寥寥无几,开发者群体不能形成规模的前提下,在坚持把量做大的基础上,只能另寻出路。

对于AI Labs来说,他们选择了与大多数厂商相同的道路:

对既有产品系统进行升级,拓展多条产品线,与各种公司谈嵌入式合作,思考是否在给用户推荐的信息中融入广告。

但唯一不同的,以及值得赞颂的,是「他们愿意跑得快一点儿」。

「我们与Echo之间差了3年。但我们在花费血本来弥补这个时间差。你知道,从7月推出再到11月光棍节,我们用了4个月时间,让天猫精灵达到了100万。

我们是国内第一个做到的,所以我们可以被称为中国音箱市场的垦荒者。」

记得一位音箱测评自媒体曾表示,自己在2015年试用某创业公司研发的智能音箱时感到颇为惊艳。

因为那个时候入局者不多,互相对比起来,音箱能够接收到指令并给予正确反馈就可以让人刮目相看,而同一时期的竞品…无疑相当于智障。

两年过去,当他再次把那个创业公司研发的音箱与天猫精灵、小米音箱、叮咚音箱等大厂产品放在一起时。让他惊讶的是,前者竟然在这两年里几乎没什么进步:

「大厂都进来了,所以它现在沦为智障了。」

这样来看,「快」不仅是科技公司天然的美德,也是最为残酷的竞争法则。

「我有做硬件的经历,知道大部分时间我们其实是寂寞的,也就AI风口爆发了出来晒一下。我们从来都是默默地提各种变态需求,默默地改进技术,默默地吐槽自己的产品。

省去说话的时间,做一个扫地僧即可。」

而扫地僧,恰恰是《天龙八部》里登场的天下第一高手。


天猫音箱虽成百万爆款,阿里AI Labs的AI生态仍在路上

5月25日,相约北京·千禧酒店,与安防大咖共话安防AI创新千人峰会,人脉、资源、投资人都在这里!亿欧呈献一场安防行业盛宴。

在安防、警务、刑侦、交通场景,AI无论在视频、图片、语音、文本等方向的突破,还是在资本和需求的推动下,都展示了创新改造者姿态。这次浪潮来得尤其猛烈,我们相信,AI正改变安防,AI正为安防带来创新。

点此了解详情: GIIS 2018·安防AI创新峰会

随意打赏

天猫x1智能音箱天猫精灵智能音箱阿里天猫精灵x1阿里天猫小店阿里天猫魔盒阿里天猫精灵天猫阿里汽车阿里天猫爆款文案爆款打造
提交建议
微信扫一扫,分享给好友吧。