一家企业想在智慧城市领域称霸,起码要具备这两种基因(下)
本文转载自微信公众号“集智俱乐部”,作者王鹏,智慧城市专家,原标题《智慧城市长文综述:展望未来城市,万物皆可运营》。亿欧智慧城市对文章进行二次编辑,拆解为两篇文章,本篇覆盖第七章至第十一章,供读者参考。( 前六章链接 )
在大数据和人工智能时代,城市正在逐渐具有“统一的逻辑”, 产业生态智能化将如何改造,城市商业场景与服务将如何升级,对政府治理模式将有怎样的影响,对这些问题,智慧城市专家王鹏以“未来城市万物皆可运营”为主题,整理了这篇长文综述。
目录
一、 未来的城市将逐渐具有“统一的逻辑”
二、 对几家“武林高手”企业的研判
三、 数据驱动的产业共生
四、 从城市运营商到万物运营商
五、 智慧城市两个方向(上)
六、 智慧城市两个方向(下)
七、 数字孪生
八、 5G
九、 场景规划
十、 基础设施
十一、智慧城市终极模型
七、数字孪生
数字孪生 概念近两年在智慧城市领域出镜率很高。这个来自于工业领域的概念虽然名字有趣,但其实并没有什么太新的内涵,无非是在数字空间再造实体空间的镜像。对于建筑、规划、地理学科来说,本来我们也要对城市空间三维建模,也就是制作之前所说的数字城市。我们本来就有的CIM(城市信息模型)概念其实基本上与数字孪生就是同义词。
当然,除了描述三维空间信息的GIS和BIM,物联网使万物互联和实时感知成为可能,我们可以实现更多城市运行数据的采集,所有的人、物、流都可以在数字空间里获得数据同步。这样看来,其实我们前几年一直聊的城市大数据,就是在试图用各种数据,尽可能还原一个完整的城市运行状态。除了政府数据、传统的空间数据、互联网数据以外,一个新的城市感知网已经呼之欲出。目前的摄像头、环境监测设备,固然能采集很多的实时数据,但离完整呈现城市运行状态,满足精细化管理的需求,还相去甚远。
谈到数字孪生,大家经常会关注逼格很高的部分,比如像一个沙盒系统可以模拟推演,什么人工智能可以决策判断,甚至还能如Matrix或头号玩家生活在虚拟世界。作为终极目标,这些没毛病,但现阶段聊这些,只能说想多了。
所谓人工智能的逻辑,无论什么机器学习还是神经网络,都先要学习大量历史数据,而我们其实根本没有足够的多维数据去训练城市运行的AI,充其量模拟某些简单系统的运行,勉强整个红绿灯配时。
所以说,其实实现数字孪生的关键就是定义全域感知的新技术产品,这不是某一个单品,而是一个产品体系,而且必然随着传感器、5G和边缘计算技术的发展不断迭代。高密度部署、高精度感知、实时结构化计算回传,类似无人驾驶高精地图。实时更新的全息城市信息模型除了空间信息,还可以叠加无数个数据维度。一砖一瓦、一草一木、一桌一椅、一人一车,都会以不同的频率更新位置和状态信息,真的“全息”,数据量和带宽需求都是我们现在无法想象的,但又会是5G时代的常态。当然,“全息”无疑是永无止境的目标,也许是下一个IT领域追求的类似摩尔定律的新周期。
记得当年帮摩拜做魔方平台的时候,访遍了国内的大数据和可视化公司,就没有一家能承载如此海量的实时数据,还要做复杂的计算和可视化,幸好相数的技术解决了这个难题,后来停简单、点我达这些城市服务运营商的出现,也出现了越来越多的物联网大数据平台场景需求,而至今仍然罕有另外的企业能够应对。从这个角度说,所谓现状孪生这第一个阶段尚且还是个概念罢了。
图:制造领域的数字孪生模型图解
(来源:Delotte University Press)
八:5G
“啊~啊~啊~5~G,你比4G多一~G”,仅此而已?
跟之前几篇比较抽象的文章相比,这篇的主题好像是有点硬。5G作为目前最为热门的ICT技术概念,连菊厂自己都认为尚无真正的应用场景,而这其实并非设备商应该解决的,而是需要各行各业立足自身行业未来形态有所预判。所以感觉最近很多行业都在思考其与自身的关系,其中就包括一些开发商朋友,还有城市规划的小伙伴们。
联想到前面几代无线通信技术的升级,虽然速度快了成百上千倍,传输内容从语音到短信、长文本、图片、视频、直播,催生了移动互联网,尤其是微博微信等社交应用、还有快手抖音各大视频APP、淘宝京东拼多多,但似乎对城市形态和城市领域的传统行业并没有带来什么变化。当然,我们周围是多了些生鲜电商实体店,倒闭了一些百货商场,但也仅此而已?
为什么大家对5G有着不同以往的期待?也许是因为这次升级看起来将要达到一些大家向往已久的临界点,会引发一系列质变,当然也会带来无穷的新商机,对城市的规划、建设、运营和管理的影响更会十分巨大。可以说,我们之前搞的所有关于智慧城市领域的创新,皆是5G时代开始的新城市革命的序章。
就技术来说,5G几乎满足了关于无线通讯的一切想象,连续广域覆盖可高速移动、低时延高可靠、低功耗大连接、高容量(流量密度)。无线通讯的技术进步,无非围绕频率、带宽、功率和信噪比的一系列数学关系的优化,5G之所以和以往的升级不同,就是这次的频谱效率基本达到了香农定理的极限,如果没有基础理论的革命,这次升级基本是这一轮的最后一次了。所谓6G,大家通常寄希望在太赫兹频段,目前还只能是个概念。
香农定理(知乎甜草莓)
毫米波通信是5G的最核心技术特点,毫米波波束窄,方向性好。Small cell、大规模MIMO等基站和天线技术也是服务于毫米波这个前提的。这些对城市空间最直接的影响就是,由于微站的发射功率低,服务半径小,穿透性差,传输损耗大,基本是视距传输,需要在城市中非常密集地部署。近两年智能路灯杆产品和商业模式的出现,基本都是在为5G基站的落地做准备。灯杆作为城市中最为密集的基础设施,又有了供电和宽带连接保障,必然会成为城市物联网的最重要载体,尤其是采集视频乃至3维数据流、声音、污染物、气象等城市运行状态的多种传感器,充分融合后可以实现全息的网格化城市状态和事件感知。而这些载体和数据未来也会是自动驾驶车路通讯的重要议题。
作为一个副产品,高密度的基站布局和精确的定向能力,会带来手机信令数据价值的一次飞跃。定位精度会提高一个数量级,跟现在的GPS数据不相上下,达到亚米乃至厘米级。更重要的是,可以实现室内外一体化的高精定位。信令数据会成为描述人的位置和行为的最为整齐精确的数据源,取代绝大多数定位和计数工具,为精细化的城市规划和治理提供支持。当然,手机这种产品形态应该在五年左右会被取代,但应该会化身到更多的物联网产品尤其是可穿戴设备之中发挥类似的作用。
就具体指标来说,下载速率理论值每秒10GB,是4G的十倍;理论时延1ms,是4G的几十分之一;单通信小区物联网终端数量理论值达到百万级别,是4G的十倍以上。
从高可靠低时延角度讲,1ms量级其实已经低于神经系统的传递时延,所以主要应用于需要超高精度或者较高移动速度的场景,最为典型的就是自动驾驶。尤其是作为L5过渡状态的编队驾驶和远程驾驶。在高速行驶情况下,毫秒级的刹车时延对应的就是厘米级的刹车距离。从单车自主控制,到V2V和V2X的大系统,通讯技术可以释放大量车端的感知和计算压力,最重要的好处无疑是安全性。而无人驾驶安全性的提高直至L5最终普及,给城市带来的变化应该是5G时代里最大的。本文不重点展开这部分,毕竟Sidewalk的整个城市尺度空间变革的故事几乎都是基于无人驾驶的,包括空间距离的敏感性降低、出行途中与固定场所的区别部分消解、小汽车无需私有、共享出行和公共交通融合、城市用地性质高度混合、TOD模式的消解、路面资源需求降低、停车场需求大幅降低……总的来说,无人驾驶带来的是城市的交通功能和其他功能的融合,车辆和各种广义无人驾驶载具会变成移动的城市功能空间。雅典宪章以来城市功能分区的概念会在各个尺度上发生消解,虽然不一定是彻底颠覆。城市功能空间无论大小,彼此之间信息的互通和通过道路交通完成实体空间的连接会呈现一种新的关系,其实就是数字孪生空间与实体空间的几种新的互动方式,暂时还没有合适的理论探讨。
此外,5G可以提供一些精密操作场景的远程化。低时延另外一个典型应用场景是远程医疗。结合触觉机器人,可以实现远程B超和内窥镜等诊断,甚至远程手术,帮助非城市化或落后地区实现医疗水平的均衡和医疗成本的降低。类似的,从工业角度来说,一些高精度操作工作也可以引入远程协作机制甚至远程就业,也许这些未来只是远离城市的无人工厂的补充而已。
高带宽应用的典型应用是VR、AR和超高清视频,大家通常会考虑其娱乐应用。在我看来,重点是5G支持的带宽大概可以解决一些视频时代还不能解决的面对面交流问题。以前我们以为通信、语音甚至视频可以一定程度上消解空间距离,甚至可以实现远程交流取代面对面。直至5G时代,真正全息的VR技术才能一定程度上实现这个目标。除了语音和面孔,细微的表情动作都可以被捕捉,感受到“气场”层面的信息,甚至还包括气味、微环境、触觉等影响交流真实感的因素。可以预见,当与岛国老师们沉浸式的交流需求先得到完美满足以后,其他的场景应该都问题不大了。说到老师这事,流水线式的传统K12教育在AI和5G的辅助下,是不是也能真正实现远程互动和因材施教呢?
低功耗大连接主要应用在物联网领域。未来城市中,万物互联会超出我们目前的想象,不仅是智能家居和交通工具这些应用。最后一公里的光纤网络甚至基本的弱电布线都可能被5G直连取代,目前各种连接方式的智能家居设备可能都会变成扁平的结构,会对目前的市场格局产生不小的影响。工程建设可以摆脱一些线缆的限制,这一点会节约不少成本,但实际对设计的影响会有多大还需要观察。最近参与的一些智慧公园项目中这个感受尤为明显,后面可能会专门撰文。
2G时代和NB-IoT早期不靠谱的物联网连接状况将成为历史,无论是NB-IoT还是Lora或者另外的低功耗广域网协议取胜或者分庭抗礼,都会给我们带来更稳定可靠的物联网体验,当然这一点是之前深受其害者才会有的感到区别。
随着MEMS等传感器技术的发展,所有城市基础设施甚至建筑构件都会接入物联网,并实时更新状态,最终实现数据驱动的控制运营。与低时延特征结合,AI边缘计算也会与物联网融合,解决基本的AI分析能力,减轻云端和传输层没有必要的负担,真正实现AIOT。例如未来无缝覆盖的智能摄像头,其采集的高清视频会在本地完成包括人脸在内的各种基本内容识别和结构化处理,可以按需调用甚至分布式检索,结合其他传感能力,共同构建真正高频刷新的数字孪生城市。
5G无疑会象电力、蒸汽机一样使我们的城市发生巨大的变化。作为城市规划师,我们有幸身处一个即将变革的时代,可能会创造新的城市理论范式。但目前凭我们的想象力,似乎并不能预测未来城市形态的变化。上文并未有什么实质性的新知,充其量算是整理一下思路。已经提到了工业、交通、医疗、教育这些决定城市中心性的最强功能要素的改变,加上早就发生的零售业,虽然导致的空间形态改变似乎也就是使城市功能进一步分散和混合,甚至原子化,大尺度来讲也许指向区域化网络化,但叠加在一起的效果就无法想象了。
而且这次城市革命更大的改变,也许主要不是形态上的,而是规划、建设、运营、管理的逻辑本身。5G也不是一个独立的技术,而是和其他ICT乃至材料和生物等技术一起,呈现一个全息感知、数据驱动的城市,可以更好地通过人工智能适应和满足市民的需求,自主学习,自我完善。城市规划师,也不需要绞尽脑汁想象一个与以往不同的科幻场景,而是需要更多思考如何利用新的技术和数据去渐进优化我们的存量城市空间,学会在外科手术和望闻问切的技能之外,转变成循证医学乃至精准医学的专家。智慧城市也需要更多理解ICT技术的建筑师和城市规划师,作为智能场景规划师,创造更丰富得体的技术应用场景。
九、场景规划
最近有了一个新的岗位,智慧城市场景规划专家。似乎全世界还没有类似的专业和岗位,这几天也免在思考,这件事情的核心技术和解决的问题是什么。
智慧城市圈子里的同学们应该都有感觉,以城市大脑为代表,去年以来这个领域又重新火了起来。5G、人工智能、物联网、无人驾驶这些新技术概念让这个一直沉浸在电子政务、摄像头和IOC大屏的领域有了更大的想象空间。Sidewalk的未来城市愿景虽然一直停留在ppt上,但美好的效果图还是让大家兴奋和憧憬不已。这几个月接触的项目中,从开发商的小镇和园区,到城市新区,还有国家战略的千年新城,无不提出建设智慧城市乃至未来城市,但都面临一个问题,如何去规划建设一个属于未来的城市。
本来这个问题很简单,因为城市规划天生就是面向未来的,能绘到底的一张蓝图本来就是这个行业的本分。但是传统的空间美学主导的城市设计,以及法定体系主导的功能分区,已经使这个行业的想象力逐渐枯竭。在产业革命带来的新一轮城市革命之前,并没有做好相应的理论准备,以至于无法适应新一轮的空间规划需求。我们的学校教育和职业培养体系,都缺失了数据科学的基本培训,更不用说对ICT技术的敏感性。很少有规划师能回答新一代信息基础设施与城市空间的一系列关系。规划项目中也经常会煞有介事地规划智慧城市专题,但往往会止步于wifi覆盖,更可笑的是经常会把数据中心堂而皇之的摆在城市中心以示其重要性。新一代信息基础设施对于城市的改变不会亚于小汽车,而想想我们现在的规划规范有多少逻辑来自于小汽车,就知道我们的规划行业需要补多少课。
当然这几年流行的智慧城市顶层设计貌似也是回答这个问题的。但ICT公司们的目标只是把自己的成熟产品卖给政府,所以他们所谓的顶层设计只能是系统架构设计的马甲。哪怕你是千年大计,互联网公司有的也就只是现成的云网终端,电网、铁塔公司、电信设备和运营商,能摆的也就是充电桩和基站。当然,无论谁做总包,都会找很多的ISV小伙伴去集成各种各样的软硬件产品,从摄像头到红绿灯,从灯杆到垃圾桶,都可以从市场上采购,大不了再放几辆无人驾驶汽车转悠。但这样真的能建设出未来么?
综合来看,目前市面上的智慧城市和未来城市需求有两类,一类是面向当下,用当前的成熟新技术解决痛点问题;一类是面向未来,探索未来技术和新模式。两种模式虽然看起来都是综合运用各种ICT技术去升级城市基础设施和运营体系以及城市管理模式,但方法论的区别不小。
无论是政府的信息化,还是开发商的示范项目,大多是用成熟技术解决当下问题的。理论上,ICT企业脱胎于软件工程的需求分析和响应方法论是可以应对的。但是,软件工程的前提是需求明确,而传统部门用户提出来的只能是基于传统的规范和模式的业务需求,直接用新技术去响应这些需求,结果就是换汤不换药。我们见到的大多数智慧城市产品都是如此,只是把一部分以前由人来完成的工作交给机器,并未帮助传统部门实现新的运营或者管理模式。所以这类需求一定要基于对业务本质的高度理解,帮助用户重新定义目标的可行实现路径,通常采用小规模渐进式的自下而上研发实现。
而面向未来的模式就更加难以实现。没有现实的需求和成熟的产品,却需要向iphone一样洞察技术的趋势和人性的偏好,重新定义整个城市在新技术作用下的新的生产生活模式。只有极少数的大公司和大城市有这样洞察未来的雄心和能力,因为只有这样才能成为引领者而非跟随者。未来其实是有多种实现路径和可能的,绝大多数场景不存在唯一的技术解决方案,不是科学家能在实验室决定的,而需要在真实的城市场景里试错、迭代和完善,最终成为共识。比如新能源汽车的方案,就技术来讲氢和电显然是各有优势,但谁先落地并获得大量的用户,可能就是决定性的胜利。这才是我们为什么要建设未来城市的示范区,不是一个盆景,而是新的技术和标准的孵化器,各种新产品在真正的城市场景里磨合和完善,同时也需要创新企业现场研发和完善产品,通过对所有城市系统的流程再造,形成从产品研发、落地,到收集和分析用户数据,完善和迭代产品的闭环,自然也会形成一个基于创新的产业生态。这类需求其实也是自上而下的顶层设计的真正意义所在,需要由政府或大型企业(联盟)去抉择和定义整个城市的演进方向和关键技术方案,通过大规模产业协作自上而下完成研发组织过程。
这两类需求都需要有真正意义上的智慧场景规划能力去响应。
“场景”规划是一个很抽象和综合的概念,我理解为对城市的空间容器里各种要素的统筹安排,城市规划侧重其实体空间要素,新芝加哥学派的场景理论对城市空间和社会空间已经有全面的研究,而智慧城市则需要综合考虑空间要素和ICT技术要素。智慧城市场景设计可以类比电影和游戏的场景设计,从故事线到世界观,从镜头语言到灯光道具,需要从整个系统的运行逻辑去综合分析。场景设计有几个关键的环节或者说技术要求,也许可以作为有志于这个方向的小朋友们参考。
首先,是对城市场景复杂性的理解 。
大家都知道一句话,城市是开放复杂巨系统,但这究竟意味着什么呢?城市要素之间复杂的关联和互动,牵一发而动全身,以至于往往无法用还原论思维简化。跟城市规划类似,解决复杂问题需要关注事物的关联性和动态性,把城市里的各个系统、各个部门综合起来考虑。目前的智慧城市系统绝大多数是垂直部门建设的,形成一个一个的数据烟囱。但其实各种数据可以服务的都不仅是一个系统,这就导致了大量的重复建设尤其是重复的数据采集。各系统之间的共性需求没有统一的动力,共享和汇聚的困难会在各个环节体现,尤其是市级的统筹,往往面对千头万绪无从下手。比如我们研发城市数据融合传感器,就要梳理环保、城管、交通、公安等各个系统的感知需求,归并指标和空间部署的共性因素,并探讨每种数据对其他系统的可能价值,以创造创新的行业应用。另外,复杂系统自组织和涌现等特征,使个体之和远大于整体,所以非线性思维是重要的素质。
二是对技术与空间的互动关系的理解。
革命性的技术对空间都会有摧毁和重塑的力量,铁路、电力、汽车和电梯都是类似可以改变城市形态的技术。即将出现的L4L5级自动驾驶和5G等都可能会成为类似的革命性技术。参考上一篇对5G城市场景的推演,我们需要能超脱于技术本身,理解识别城市中可变的和不变的要素,从技术史的视角去观察技术对各种城市要素可能带来的改变,进而推演随之而来的空间变革。比如对无人驾驶和共享出行主导的城市进行前瞻,就不能仍然机械地按照此时的规范配置停车位,至少要考虑到未来车道变窄且停车需求降低空间富余之后的弹性改造方式。而如果还用私家拥车而非共享的逻辑去测算无人驾驶汽车的需求量,那就会是个比交通拥堵更大的灾难。所以逻辑推演的更长远愿景将是公交系统变革和用地组织方式的变化等。这也体现了第一条的复杂性,即每个变量的变化带来的都会是一系列连锁反应。
三是对综合技术的敏感性。
智慧城市项目自然离不开ICT技术的综合应用,而创新应用、尤其是着眼长远的流程再造项目,往往需要用到非常多的跨领域技术,甚至黑科技进行创新研发,这对任何领域背景人员都是巨大的挑战。云计算、物联网、传感器这几个常规技术对IT公司来说可能问题不大,但涉及到复杂无线需求,就只有菊厂有足够CT能力搞定。但更多的场景中,涉及到更全面的材料、工控、能源,甚至生化领域的技术,即使每种技术都未必多复杂,但综合起来就成了不可能完成的任务。比如对排水管网内部堵、漏的监测,几乎只有井下机器人一种办法,但市场上的产品形态大都还很初级,要不就是个球不知道被冲到哪里去,要不就是只能拖着几十米电线一个井一个井抽干了水放下去靠视频检查一小段,每公里综合成本上万。当然,现在已经有了视频、激光雷达、声纳一体的三维形态感知能力,也有了履带、蛇形、腹壁等行进方式,也有携带电池的长续航能力。但可不间断自主工作,可从污水中供电,可穿透数米土层与地面通讯和定位,可处理复杂粘稠油污沾染腐蚀,可放置无源定位标签和MEMS传感器等需求其实在技术上都并非难事。但因为涉及技术领域过于宽泛,对研发团队的综合要求高,导致一直没有理想的产品出现。在城市基础设施改造领域,这类价值巨大的市场需求俯拾皆是,但通常被熟视无睹。
四是问题导向的综合场景的构建能力。
我理解的城市规划本质是统筹各种资源解决城市问题,ICT技术当然和空间手段一样理应成为解决问题的工具。现在的各种所谓智慧城市示范项目,往往是把各种所谓的高科技产品摆在一起,却并未真正考虑场景的需求,就连雄安市民中心和海淀公园也不例外。例如园区的无人驾驶产品已经成熟,但通常会被扔到路上作为个游乐项目,在我们的方案中,则会作为智能垃圾桶的搭档成为智能定义路线的垃圾回收载具,或者解决特定短途交通问题的工具等。在某软件园的改造方案征集中,园内外的顶尖厂商提出的都是各自的成熟产品和解决方案,而我们则重点针对其园内外的主要交通问题,提出了结合景观设计的慢行系统再造、园外停车场改造升级和包括无人驾驶在内的多层次接驳体系建立,以及与接驳系统结合的统一访客管理系统,共享交通精细化管理等策略,有效改善园区痛点。
五是对城市数据的深刻理解。
无论智能化还是信息化,基础都是数字化。用数据重新描述和解释城市,是智慧城市的第一步,也是贯穿整个城市生命周期的主题。数据是智能的前提,没有作为训练样本的海量数据的采集,就没有对各种城市系统规律的识别,更谈不到预测和调控;数据是场景的线索,各种应用和产品之间靠数据交换建立有机的联系,丰富的互操作来自于充分的跨系统数据打通;数据是产业的动力,开放共享而又保护隐私的健全的数据生态,是智慧城市创新创业氛围形成的的重要前提。
数据的主要来源,会从描述人的互联网到描述设施的物联网。从各种独立传感器到一体化的城市传感网,从传统设施被动感知到数字化设施主动上传数据,这个改变的过程也是我们改造物理世界的基本逻辑。最终在数字空间里呈现一个全息的数字孪生城市,甚至把主要的生活场景从实体空间迁至其中。
六是对人的需求的理解。
这一点最为抽象。智慧城市项目,无论是2G还是2B,大多数最终都是服务市民的。我们认为,以市民为核心,多元主体的全面参与是项目成功的基本保障。在空间规划时代,我们有环境行为学和人体工程学的工具。但在数字化场景中,人的主观体验和获得感、幸福感的量化描述和评价并没有相应的方法论。我们看到的很多尴尬的产品都是工程师的一厢情愿,最有代表性的就是很多主流智能家居产品的设计,蹩脚的产品和交互设计使本来的举手之劳变得繁琐和无趣。在B端和G端的类似的画蛇添足应用也是不少,比如现在大杂烩式的智能灯杆,把各种简单的ICT功能模块各自挂在同一个杆上,就号称智能,却没有一个真正把一体化采集城市数据训练城市智能作为诉求。也许通过数据解决交通问题并不是直接2C,但可能比一个路灯上的手机充电器更能解决市民的实际问题。
七是对基础设施运行规律的理解。
智慧城市本质上是指新一代的城市支撑技术体系,而从技术属性去定义城市的关键在于新的基础设施体系,这是支持所有城市规模形态和运营管理模式的根本。但由于大多数是隐蔽工程,投资巨大但又不容易直接看到,所以很容易被忽略。城市的水电气热管网和能源供给方式,加上固废处理方法,是整个工业时代的技术产物,基本方式也许已经稳定,但其效率和安全、节能、环保等特性,还有巨大的提升空间,而基本方法就是依靠ICT和材料、化学、生物、能源等新技术去改造现有系统,以支撑更加可持续发展的城市形态。
时至今日,地面上的城市光鲜亮丽,却很少有哪个城市能搞清楚自己地下埋着多少管线,有多少正在不断跑冒滴漏污染着土壤和地下水,甚至爆裂乃至爆炸的风险潜伏。综合管廊当然是靠钱解决问题的好办法,但事实上大量存量城市基础设施还需要更为务实的方式去改进。
物联网时代的万物互联,重点并非是家里的电灯电视,而是整个城市基础设施体系的实时在线可控。所有地下管线都将变成新的ICT设备,自身具备神经系统,获得感知和数据传输能力,使城市运行更加安全高效和韧性。这个地上地下一体化的感知和控制网络,其精度和覆盖会远超过现在的想象。从人为巡检、经验操作演进为靠人工智能控制的新城市生命线,对未来的5G网络来说也会是非常主要的应用场景。最近不得不重新回忆在学校上过的一点基础设施课程,和当年亲手画过的压力和重力管网,试图抽象可能支持其高效运行的各种数据及其感知方式,这也许是一种更接近未来城市本质的方法。
此外,道路作为一种特殊的基础设施,与交通方式一起,从来都是定义城市形态的最重要要素。ICT的投资在道路基建费用中的比重会成倍增加,无人驾驶、车路一体化、路面的发电和充电、新型公交系统、MAAS……更多议题不再展开。
八是对城市经济规律的认识。
这个问题简单说就是一个“钱”字。合理的商业模式是场景成立的前提。虽然政府已经不象早年那样充当冤大头为各种毫无作用的信息化工程付费,但如今的PPP也大都还是挂羊头卖狗肉而已,有几个能真正实现运营并由持续收益的项目?大都只是从一次性收费变成了按揭而已。
每个场景下都会有受益方和付费方,虽然可能是羊毛出在猪身上。之前分析过,智慧城市场景不外乎市场主导的城市运营和政府主导的城市管理两个大方向。前者通常是市场化的方式实现收益,对于基础设施则是特许经营与市场定价和政府补贴等经济手段相结合。Google对城市设施重新数字化定义之后,指向的是其实时在线可控可运营的模式,以数据运营驱动城市运营的逻辑一定会催生出新的城市运营商业态,这也许是继开发商之后一个新的最赚钱行业。
在城市管理领域,政府为了提高效率而提高信息化水平,直接付费采购是比较合理的方式,但其绩效的评估并非易事。其实社区治理水平、舆情、市民情绪、满意度这些看似主观的体验也都可以用数据来描述和评估。随着城市的发育完善和财力提升,城市政府对信息化产品的支付意愿也会从能直接盈利和容易见效的交通、安防等领域,外溢到更精细的管理颗粒度,提升市民更微观的体验和幸福感,城市的安全性和舒适性也会进入一个新的发展阶段。
再写下去,恐怕建筑师规划师咨询师加上系统架构师产品经理和销售等职业的技能树都要列上来了…这件事情的确需要跨学科的综合视野,但也不可能有人真正具备这些能力,只能说需要一种面向这些领域的开放的心态和综合型的思维。欢迎越来越多的城市规划师投入到这个新的蓝海领域,响应巨大的市场需求,重新定义我们的城市和城市规划学科。
十、基础设施
上面一篇里其实已经提到了基础设施作为未来城市最重要的底层场景的重要性。不夸张的说,基础设施的运行逻辑定义了城市运营和管理的基本模式和水平。
这里说的基础设施,是城市规划里相对狭义的工程性设施概念,包括能源、给排水、通信等系统,环卫中的固废可以一起讨论,道路作为独立的一大类不在这里重点探讨,防灾又是不同的维度。所以我们基本的关注点就是地下管网和其节点设施。这些设施或者说管网的核心特征就是输送城市里的各种“流”的通道。“流”分为几个层次,物质流包括水(自来水、雨水、污水、中水)、燃气、供热、垃圾,能量流主要是电网(供热燃气虽然本质上是传递能量,但实际的逻辑还是运送物质载体),信息流是广义电信网络(有线、无线、包括有线电视等)。城市基础设施投资和维护成本巨大,全国每年都是数万亿市场,且关系城市的安全高效运行,但大都又处于一个极其低效的人工管理阶段。
说到未来的基础设施运行逻辑,要先说一下CPS。CPS(信息物理系统,Cyber-Physical Systems)是一个综合计算、网络和物理环境的多维复杂系统,通过3C(Computer、Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感知、动态控制和信息服务。CPS实现计算、通信与物理系统的一体化设计,可使系统更加可靠、高效、实时协同。我们最近常说的数字孪生跟CPS同样是与工业4.0密切相关的概念,都是描述未来世界万物由数据驱动进行计算、通信、精确控制、远程协调和自治的基本运转逻辑。数字孪生只是CPS的数字化前提,并不只是建个三维模型,实现感知到控制的闭环才是目标。城市领域通常最关心的规划、建设、管理业务,其实永远不可能变成CPS驱动的工程逻辑闭环,所以并非数字孪生的最典型应用。城市工程性基础设施系统作为一种工业化工程,其转型的大逻辑则必然是从数字孪生到CPS的过程。
在前面说的几种基础设施流中,信息流天然就具有信息化属性,也基本上是完全意义上的数据驱动运行,甚至不具备人工控制的可能性。除此之外,作为能量流的电网信息化程度也非常之高,当然也是在分布式能源和新能源汽车等各种新型智能化设备的新需求推动下,发电、输变电、配电、用电和调度各环节已经基本实现了智能化,从末端的智能电表普及率就可以有所感受。随着能源互联网、坚强智能电网、泛在电力物联网等概念的陆续提出,电网系统从数据采集到传输和控制经过了几轮技术升级,提出了从芯片、终端、网络、平台到AI的全面方案,即将通过全感知、全连接,实现基于全网实时数据的毫秒级预测响应和调度能力。
电网的改造方向和路径基本可以作为基础设施改造的一个蓝本。全面的CPS化带来的可靠性要求,甚至使其在公网之外需要建立230MHz无线专网。其数十亿规模的物联网和边缘计算节点、毫秒级的时延要求、变压器断路器储能设备等生态链的升级,再造了一个全国规模的基础设施实体网络,也造就了一个巨大的新兴市场。类似的,城市路网作为特殊的基础设施网络也很早就开始了智能化改造,基本实现了分布式的流量和事件监测,也开始用微观感知数据调控红绿灯进行全网诱导调控的尝试,其中轨道交通网作为相对简单和封闭的系统,更是很早就开始讨论CPS化的完全数据驱动控制。
而对照来看,我国包括大城市在内,供排水网络为代表的物质网技术水平可以说还停留在中世纪。既有管线位置和拓扑结构难以探测和维护;管网损耗和泄漏、污染、爆炸、灾损等风险巨大,维护成本高,第一代城市管网已经需要大规模改造;地下环境导致管内状态数据难以监测和传输,目前基本是借用工业仪表的思路和产品感知干管节点压力、流量、流速、水质、破损、堵塞等;数据有线传输为主,成本巨大,数据的质量、密度、频度都难以达到自动控制的需要……
当然,如此明显的痛点和巨大的市场不会没有变革的力量。比如海绵城市的理念作为雨水源头减量的治本之道无疑正确,但操作中往往巨大的投资都变成了劣质的透水材料,巨额投资并没有换来多少监测设备来检验工程效果。综合管廊是又一项已经式微的运动,用整个生命周期无法回收的成本,在地下为管网修房子,看似一劳永逸,但其实仍然不能解决管内监测和控制的大部分问题。除了个别工程条件良好且有特殊需求的路段,以及个别不计成本的城市,这个方式是必然无法普及的。
物质流管网虽然各自有其物理特征和拓扑结构,亦有压力和重力之分,但基本逻辑的共同点很多,只是由于分属不同的管理部门甚至不同学科专业,以至于很少放在一起探讨。压力管网的源头是各种生产企业或者从长输管线接入,水源气源热源等都可以通过变频调压设备持续送入管网;管网无论是环状、枝状还是放射抑或混合结构,都在关键的干管节点有各种压力流量流速等指标的传感器,一方面通过数学模型可以借助源头调压、沿途闸阀进行全网的需求平衡和调节,一方面可以通过指标的异常发现大型的事故和故障,如爆管、漏损、堵塞等;在末端(小区)会有各种增压或调蓄设备,保证终端用户的正常压力范围,也会有计量仪表进行计量和计费。至于重力管则是大致相反的的逻辑,分散的源头,集中的末端处理或者排放,同样靠中间的传感器和闸泵以及调蓄节点来平衡网络负荷。虽然各种设备大都实现了联网和PLC控制,但大多数设备的控制时延都是分钟乃至小时级,大都只能在事故级事件时响应,日常问题只能大致定位,再配合人工手段排查和经验推断。
在CPS的逻辑下,在通过CIM平台维护完整的管线拓扑结构的前提下,大量无线小型分布式传感器和边缘计算节点将整个基础设施网络变成一套新的ICT基础设施。加上实时无线远传的末端计量仪表,配合新型管内巡线工具,理论上可以实现一个全息的数字孪生系统。基于人工智能建模的全网动态平衡调度算法,可以毫秒级控制各种设备进行调节;对各种管道损伤和内部异常,可以精准定位和及时干预。
这套逻辑说起来并不复杂,但比起电力和交通等系统,埋在地下的管网复杂程度极高,各种管线内部压力和腐蚀、污染等情况各不相同,土层和多种管壁材质令通讯和传感领域的大多数常规方法都无能为力。可以说,管网领域的绝大多数需求尚无成熟的产品响应,这也是智慧城市领域最大的潜在市场。真正意义上的智慧管网需要的核心产品包括新型管道材料和结构、分布式微型管道传感器等等,每一项都是千亿乃至万亿市场的新领域。
此外,完全自动控制的城市生命线是运营商网络很难保障的,因此需要真正意义上的基础设施物联专网。事实上,230频段本来就不是电力部门独享的,只是电网作为全国性企业,比地方政府更有能力建设和维护一张基础设施专网。工信部165号文指出:230网络,要满足电力、燃气、人防、水务等行业无线数据传输和能源互联网应用的需求,采用共网模式,使用230MHz频段和时分双工(TDD)方式载波聚合、动态频谱共享技术。负责基础设施建设标准的住房和城乡建设部应该尽早介入基础设施物联专网的建设,在未来的基础设施领域真正发挥政府的指导和引领作用,在智慧城市领域掌握应有的话语权。
十一、智慧城市终极模型
城市是个复杂巨系统。无论是为了对城市进行研究,还是治理、管控,都需要把复杂系统进行还原和分解。比如传统城市规划,把城市分解为产业经济、公共服务、建筑空间、绿地景观、道路交通、生态环境、市政基础设施等若干子系统进行研究和规划。再比如城市政府,把城市分解为产业、商业、建设、土地、环保、教育、医疗、交通、公共安全等等子系统进行治理管控。两种分类有对应关系却不完全相同。比如政府的教科文卫,在规划视角下常常会合并为一个子系统,因为它们遵循同样的规划逻辑。而建设系统,因为是空间规划研究的核心内容,规划就会把它再进行细化:建筑、绿地、公共空间等。形成合乎自身逻辑的还原方法,是学科成熟的标志。
智慧城市的研究和实践中,一直以来主要依附行政管理的还原逻辑。比如我们看到的智慧医疗、智慧交通、智慧公安等。很容易理解,这样的产品与政府部门事权相对应,更便于被采购、被使用。然而当我们进行智慧城市的深度研究时,我们需要从智慧城市更本质的逻辑出发,来还原城市复杂巨系统。这一方面帮助我们思考智慧城市继续前行的方向,把握产品研发和产业发展的节奏,探索系统孤岛的问题本质与解决方式,更帮助我们深入认识“智慧”与“城市”的结合模式。
控制论的基本逻辑是基于感知系统获取的信息揭示成效与标准之间的差,并采取纠正措施,通过循环反馈使系统稳定在预定的目标状态,感知与控制(在城市领域更多是干预)是两个核心环节。从控制论角度思考,整个智慧城市的逻辑其实就是用ICT为核心的新技术方法对城市空间进行CPS(信息物理系统)化改造。但是现在流行的所谓智慧城市,除了个别领域以外,大都只是传统政府业务的数字化或者信息化,尚未到达这个阶段。
从CPS或者说可控制程度的视角,城市可以分解为三大系统:生态环境、人工建成环境和人群行为。
(一)生态环境系统——强感知,弱干预系统
生态环境系统是最为开放的。城市再小,生态系统也是与整个自然生态系统进行物质和能量交换的。作为一种人工生态系统,城市发展的物质和能量绝大多数来自其他生态系统,而城市废物,除了在本系统内分解和再利用,必须输送到其他生态系统。城市生态系统对外部系统的依赖性,也决定了其脆弱性。城市的可持续发展是最根本的城市问题之一,大气、水、垃圾等环境污染与保护问题也是城市要解决的基本问题。
现有管控/干预方式:
建设前,即规划阶段,进行评价资源环境承载力以及开发适宜性评介(目前国土空间规划的基础——“双评价”)。评价方法通过多个资源、环境、生态因子的叠加分析,从定量到定性,保证新城新区开发不对生态自然系统造成过大的破坏。因为评价方法简单、机械,同时难以对规划实施后果进行预测评估,所以这个方法仅能守住保护最最基本的底限。
具体的规划设计方案中,规划者可能会在城市内部设置各种自然廊道与斑块,如风廊、水系廊道、动物迁徙廊道、绿地公园等,以减少诸如热岛效应之类由城市产生的对生态环境的负面影响,然而如何设置这些“生态基础设施”, 我们并没有太多扎实的科学依据,总的来说尚处于“我以为”的想象水平。
城市运转过程中,调控生态环境的手段更加有限,以减排为主:通过工程性基础设施来减少本地的资源消耗、减少污染物的产生、或者在排放前进行无害化处理。
总的来说,我们知道城市对生态环境的影响是复杂的,大气和水体污染,大多是在整个生态系统内复杂的生产和传递过程。但受限于科学对于生态系统中多种大量正负反馈机制的认知水平,我们现在还无法建模、甚至解释其中过程,更不用说干预。当然,在实际操作中,由于政府考核和污染执法主要是根据环境监测设备数据,而环境监测设备的数据是可干预的,所以我们不讨论对着监测站喷水这种操作……
ICT技术能帮我们做什么:在ICT技术加持下,我们能做的主要是用更低的成本进行更高密度、更实时的环境监测。一方面,更丰富的数据和更强的算力将帮助我们更好地理解污染物生产和传播的规律、以及城市对温度、气候等产生影响、正负的反馈机制。另一方面,对突发的人为环境污染事件,我们可以及时发现、溯源和主动干预。因此,在这个领域智能化策略是“强感知,弱干预”。
(二)人工建成环境——强感知,强干预系统
理论上是物理世界智能化改造的重点
与自然生态相对的,是城市的人工建成环境,包括各种工程性基础设施和建筑、景观、街道等地表、地下的建成环境。理论上,这是一个完全可控的系统。前文提到过的水电气热等能源供给和管网系统,都是典型的可控系统,可以通过全网感知反馈数据实时调控供给和调度资源。建筑物由于是相对封闭的人工环境,所以基本上也是可控的。以BIM为载体,楼宇自控为核心的智能建筑已经是相对比较成熟的领域,可以实现对各种设备的调节,以提供相对舒适的环境体验。随着各种物联网和传感器技术的成熟,以及大量智能家居产品的问世,基于传感器感知数据调控空调、照明等设备运行状态的主动式需求管理成为智能建筑领域新的趋势。这类系统的智能化策略是“强感知,强干预”。
一个特殊的子系统
道路与交通工具是个比较特殊的领域,理论上交通工具本身作为机电装置完全可实现自动驾驶,道路工程也与建筑物类似可以实现比较完善的感知-控制闭环,所以大家往往认为交通系统是可以比较容易实现智能化改造的。目前智能交通领域大都把精力聚焦在以出行需求和OD为核心的研究方法,试图提高车速和道路通行效率。但交通的本质是人和货物的运输,道路和交通工具只是载体。出行行为作为人类活动系统,在更上层发挥作用。在整个城市系统发生技术革命以后,更上层的人的需求、出行逻辑、交通模式几个层次会发生变化,出行需求本身变成一个最大的变量,原有技术体系会瞬间崩塌,原本精密的模拟、参数,都没有了意义。
举例来说,随着车速和通行效率的提升,其他出行方式会转移到私家车,重新使道路通行能力饱和;再如无人驾驶车辆如果还是私人拥有,必将继续增加车辆数量,使城市交通系统崩溃,但其实共享出行必然取代私人拥车,使车辆需求大幅降低;这两个案例又衍生出一个问题,城市的公共交通、共享出行和私家车出行,是可以通过政策和市场进行调节转化的,甚至可以通过预约和MAAS等机制很大程度上实现可预测和控制。比起通常认为智能交通技术对路网效率20%左右的理论提升极限,城市交通政策是更具影响力的变量。
(三)人类行为——强感知,中干预系统
这就引出第三个系统:人类行为。虽然上述两大系统都与人类活动密切相关,但人类行为往往决定的只是系统的输入变量。还有一类系统本身就是围绕人的需求和行为的,包括生产、生活、出行等,又可细分为研发生产、公共服务、商业服务等领域,教育、医疗、零售、旅游、政务等均可归为这类系统。目前绝大多数智慧城市建设项目都集中在这一领域。
由于人群行为的随机性和自由度,以往我们对这类系统的感知和控制能力都很薄弱,尤其是个体行为,很多都接近随机现象。随着各种感知技术的发展和大数据技术的成熟,大量人类行为可以被感知和观察,手机信令为代表的移动终端定位数据可以提供用户的位置、行为、身份标签等,基本实现了通过个体数据对人类群体行为的实时观察。
零售是最基本的日常商业服务场景。以新零售为例,本质上是解决以顾客需求为核心的“人-货-场”资源匹配问题。随着各尺度空间定位、传感器和生物识别技术的成熟,以及线上电商的发展,我们已经可以实现对顾客的城市空间行为、店内购物轨迹甚至货品关注情况进行精确的记录,也可以通过多源数据对顾客进行精准的画像。在全面感知的基础上,可以定向推广、针对需求动态调整库存和货架SKU,提高坪效,降低推广和库存等成本。虽然并非是精准的控制,但已经实现了对系统相当程度的干预。
在线上流量接近枯竭的今天,家居和社区作为最大的线下入口,必然成为开发商、物业公司和互联网公司争夺的焦点,其实核心也是争夺人的行为和消费习惯数据,这个会最终决定零售业成败的砝码。
下一步的可能方向
说这类系统的智能化特点或者策略是“强感知,中干预”。目前智慧城市的绝大部分硬件投资也是用于对市民行为的监测,但凭借监测所能实现的更多是异常事件的及时响应,以及对市民行为时空规律的探索,以改善基础设施和公共服务。真正意义上对社会系统的控制是不可能实现的。实现社会和社区的健康发展,乃至于市民的全面发展和幸福感提升,还是需要靠社区和市民的参与共建,逐渐改善城市服务能力。
(四)小结
上述三大系统的共同策略是“强感知”,这也是ICT技术在整个智慧城市领域最核心的能力所在。
城市本质可以表述为“通过基础设施和公共服务的集中供给,在空间、环境、能源等有限资源条件下实现生产效率和居民幸福感的提升的复杂功能网络平台。”我们解决的所有城市问题几乎都可以归结为一个共同的痛点:解决有限的基础设施和服务能力与高速增长的需求之间的矛盾。交通拥堵、内涝、能源短缺、环境污染等体现了基础设施的动态服务能力和效率不足,住房供给、房价、教育医疗等公共设施问题体现了住房和公共服务的布局、供给量与服务水平不足。
感知的核心对象,一方面是以人流车流、环境污染、负面事件为代表的动态需求信息,一方面是代表供给的道路和基础设施的运行情况。在此基础上,数据平台和算法才能实现动态预测和供需匹配。对不同干预程度的系统,有些可以实现全自动的实时智能化干预,有些则进行长期的政策调控,还有些是人为的执法处置。
上图是把系统拓展到感知、模拟(预测)、干预(控制)的整个闭环,形成一个能力矩阵。其中绿色的部分就是在智慧城市真正大有作为的领域,也就是对城市感知系统的全面建设,以及对建成环境系统的数据感知、模拟预测以及动态控制。黄色部分也是可以有限作为但应有冷静认识的领域。
本文已标注来源和出处,版权归原作者所有,如有侵权,请联系我们。