消费金融不能依赖场景了,风控的核心还是技术

亿欧网  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  
消费金融不能依赖场景了,风控的核心还是技术

 不久前,馨金融发布了一篇与 消费金融 有关的文章(传送门:《这三个问题,可能是消费金融行业的最大迷思》),关于消费金融行业的 场景 对于风控而言是否有效、商业银行的业务下沉以及消费金融业务运营成本不断攀升等问题,提出了一些看法。

文章发布之后,有很多读者在后台和我交流,尤其是第一个问题,关于消费金融的线上线下场景,在获客、风控等等方面分别有哪些优势和劣势,他们站在从业者的角度,给我分享了很多实际的经验。

我在最近也带着这些问题,和不同类型的消费金融服务提供商们、从业者们聊了聊,收获颇多:

场景的存在固然是有价值的,但“场景为王”确实是一种迷思。 有场景的公司在集中地批量获客、降低获客成本和控制资金流向方面确实会有一定作用,但是落实到业务上,也对于公司管理场景的能力提出了更高要求。因此,对于风控而言,更根本的逻辑仍然在于客群的选择、能力的构建而非场景本身。

回归消费金融公司风控能力的构建,核心还是要真正能够通过新 技术 的应用,对于传统的流程进行优化与再造。 很多公司都已经引入智能客服、人脸识别、智能催收等技术提升效率与精度,但是这些能力到底如何落地,是引入第三方合作商还是自主研发,如何做取舍判断仍然是很多公司头疼的问题。

不过消费金融公司对于场景的布局,其实还有风控和获客以外的其他考量。由于不同场景下,不同人群的产品设计、数据积累等都是不同的,同时布局不同种类不同领域的场景对于数据的收集、产品体验的提升甚至是财务的稳健表现都有着积极作用。

一个大部分从业者都认同的观点是:于消费金融业务而言,客群是最重要的因素,只要分析下各家的客群结构,就可以判断出基本的风险状况,而场景只能作为其中的一个判断因子。

就像蚂蚁金服的产品“借呗”、微众银行的借贷产品“微粒贷”其实也是不基于任何场景的在线借贷产品,甚至银行的信用卡用户、还有银行的消费贷白名单用户都是没有办法控制资金流向的,但是因为用户群体足够优质,坏账率可以控制在极低的水平上。

相反,教育、医美等等这些场景都爆发过大规模的风险事件,问题并不出在场景本身,而是太过于依赖场景而忽视了对“人”本身的判断,这是非常危险的。

事实上,风控能力如果过于依赖场景的话,就等于别人在掌握自己的资金流向,这是对于公司能力的一种不自信,也不利于公司的长期发展。

在这一点上,我比较认同马上消费金融CEO赵国庆的观点,“一个真正有能力的公司风控不应该依赖场景的,因为我们不是给场景授信,我们是给人授信,给人授信是干什么的?是依赖于他背后的数据给他做受信。”

从这个角度看,场景之于 风险控制 的意义除了控制资金流向以外,更重要的其实是对于客群的获取。

无论是在线上还是线下,优质的获客场景及流量有利于公司以较低成本获得较高质量用户,进而占有更多有效数据提升风控水平、保持较低的坏账水平,这些优势有利于平台获得较低成本的资金青睐,促进盈利能力不断提升,而利率的进一步降低有利于增强用户的黏性,进入良性循环模式。

当然了,这也是一个相对理想状态下的“良性循环”,许多公司面临的现实状况是,除了少数电商巨头独占线上的交易场景、一部分消费金融公司可以依靠股东资源垄断线下部分场景以外,大部分消费金融提供商仍然主要依靠通过与第三方合作的方式嵌入场景,这也就意味着大部分平台面对的客群质量可能是差不多的。

而如果场景、人群高度重合,消费金融的场景之争大概只能决定“量”,而真正决定“质”的还是要看谁能把多头借贷的人群、资金流向控制得更到位、更精细,这本身还是能力的问题。

而在消费金融行业内提起能力建设,很多人仍然认为这是一个“务虚”的话题,人人都在说 大数据 、 人工智能 ,到底如何应用、效果如何,很像是有一座“围城”隔着,外面的人始终很难理解。

事实上,在我与很多公司交流之后的感受是,这些技术在整个业务流程的不同阶段都有应用,许多优化可能只是在某个很小的步骤,用户甚至可能完全感受不到,但是数据上的提升却很显着。

举几个例子,可能会有更直观的体会:

比如,之前和马上消费金融公司的人工智能团队接触时,他们一直在自主研发人脸比对系统,准确率达到99.99%。根据马上消费金融的测算结果,在实际应用中,该产品可能要比国内其他人脸比对产品的识别率高几个百分点。

普通人其实很难感受到一两个百分点通过率的差别到底有多大,但是对于这些消费金融公司却是意义重大。据了解,持牌消费金融公司中的头部企业的年度交易规模可达到数百亿元,如果欺诈风险能够降低一个百分点,就将为平台减少几个亿的损失。

同样的,人工智能客服对于人力成本的节省,也是这个道理。之前大部分提供消费金融服务的公司,都有规模庞大的电呼中心,负责信用审核、客户服务甚至催收等一系列工作,规模大的可能达到几千人。然而眼下,智能客服已经开始大面积取代人工客服。

此前腾讯公布的数据显示,微众银行的智能客服和8名人工客服,日消息处理量达到180万,而这相当于每天800个人工客服连续10个小时电话连线的工作量,蚂蚁金服的客服工作有九成以上都由人工智能完成。

与此同时,智能客服的准确率也越来越高。赵国庆表示,马上消费金融拥有自主知识的产权自然语言解析引擎的智能客服系统每天回复电话的数量也突破10万,结合电商的智能客服的能力,其准确率到达90%以上。

这里值得强调的一点是,许多消费金融公司的技术服务都是由第三方提供的,因为将成熟的技术嵌入场景可以使得新技术迅速进入应用阶段,服务于产品和用户。但是一个新的趋势是,许多具有用户和数据优势的平台,已经开始探索自主研发技术系统。

仍然以人脸识别技术为例,对于人工智能的发展而言,数据、场景、科技能力三者缺一不可。 尤其是在足够大的样本数据积累上,不仅需要正面样本的积累,更需要“坏种子”的反馈,然而通过第三方技术服务商嵌入场景之中提供服务,负面的反馈无法直接作用于学习引擎,因此可能很难将精度进一步提高。

“在AI上,一些有数据的公司缺乏技术,不知道如何使用数据;还有一些有科技的公司缺乏有场景。”马上消费金融CTO蒋宁表示,“马上消费金融是两方都具备的,所以我们希望通过自主研发在这个方面做得更好。

关于消费金融的场景、风控、能力建设的讨论,其实也是一个在发展过程中不断动态变化的事情,很难有定论。 尤其是行业发展来到了一个新的阶段,一些公司在布局上也会有一些新的考虑。

之前很多公司认为,线上线下的产品和针对的人群截然不同、风控逻辑截然不同,很难做到全覆盖。

但是也有很多公司在前期积累了足够的数据和用户之后,从线下延伸到线上,为白名单用户提供线上借贷、提升用户体验;或者是线上业务入局线下,扩大用户群体、丰富数据和产品,甚至进一步起到财务防御等作用。

然而产品越是复杂、客群越是多样,对于消费金融公司的能力也就提出了越高的要求。尤其是在流量红利期过后,这些公司还有更长的路要走。

本文被转载1次

首发媒体 亿欧网 | 转发媒体

随意打赏

区块链 金融场景应用消费金融大数据风控消费金融 消费场景互联网金融场景化互联网金融场景消费金融场景化消费金融场景消费金融风控场景化金融场景金融
提交建议
微信扫一扫,分享给好友吧。