谷歌开启机器视觉识别挑战赛,大型物种分类技术或取得突破

蓝鲸TMT  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

谷歌开启机器视觉识别挑战赛,大型物种分类技术或取得突破

计算机视觉技术从 70 年代到现在,40 多年时间得到迅速发展,许多计算机视觉的应用出现在了生产生活领域。尤其是到了 2012 年,基于深度学习的图像识别技术出现,极大地提高了计算机视觉的识别精确度,在一些特定场景下,机器的识别错误率已经远低于人眼识别的错误率。与此同时,研究员也发现在真实世界中,那些细粒度,实例级级别的物体识别还存在很大的挑战!

为了能使这一领域得到快速突破,谷歌向全球 CV 领域的开发者们发送了 iNaturalist 2018 挑战赛的邀请函。iNaturalist 2018 挑战赛是 iNaturalist 和 Visipedia 合作举办的大型物种分类竞赛。这个挑战赛仅仅是 CVPR 2018 FGVC5 研讨会上的众多挑战之一。

以下是雷锋网对iNaturalist 2018挑战赛介绍的编译。

随着深度学习近些年的快速发展,机器视觉识别能力也在大大提高。目前已经可将计算机视觉技术应用于自动驾驶、行人检测、虚拟现实、表情识别等任务。然而,计算机视觉仍然面临着细粒度和实例级别领域的挑战。本月早些时候,我们发布了识别个别地标的实例级地标识别挑战。这个挑战中,我们专注于细粒度的视觉识别,即区分动植物物种,汽车和摩托车模型,建筑风格等。对于计算机来说,鉴别细粒度类别非常具有挑战性,因为许多类别的训练样本相对较少,存在的样本通常缺乏权威的训练标签,并且在照明,视角和物体遮挡方面都有很大的易变性。

为了能战胜这些困难和障碍,我们很高兴宣布 2018 年 iNaturalist 挑战赛(iNat-2018)正式启动报名。这是一项与 iNaturalist 和 Visipedia(简称 Visual Encyclopedia)合作举办的物种分类竞赛,是加州理工学院(Caltech)和康奈尔纽约校区(Cornell Tech)被评为 Google 重点研究奖的一个项目。第五届国际细粒度视觉分类研讨会(FGVC5)将在 CVPR 2018 上举办,在第一届 iNaturalist 挑战基础之上,iNat-2017,iNat-2018 跨越 8000 多种植物,动物和真菌类别,拥有共超过 45 万个训练图像样本。我们邀请参与者在 Kaggle 上参加比赛,最终的实验结果提交日期截止到今年的 6 月初。训练数据,注释和预训练模型链接都可以在我们的 GitHub 中找到。



随意打赏

谷歌play谷歌语音识别谷歌挑战赛谷歌浏览器谷歌搜索谷歌地图谷歌地球谷歌翻译谷歌市场谷歌商店
提交建议
微信扫一扫,分享给好友吧。