港科大刘明:低速无人驾驶系统的应用关键要素

雷锋网  •  扫码分享
我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

港科大刘明:低速无人驾驶系统的应用关键要素 新智驾按:2019 第四届全球人工智能与机器人峰会(CCF-GAIR 2019)于深圳正式召开。峰会由中国计算机学会(CCF)主办,雷锋网 (公众号:雷锋网) 、香港中文大学(深圳)承办,深圳市人工智能与机器人研究院协办,得到了深圳市政府的大力指导,是国内人工智能和机器人学术界、工业界及投资界三大领域的顶级交流博览盛会,旨在打造国内人工智能领域极具实力的跨界交流合作平台。

越来越多的玩家正在挤进自动驾驶的赛道,在业内玩家积极探索自动驾驶的商业化落地的同时,产学研自动驾驶团队也在蓄势发力。

香港科技大学自主驾驶中心主任刘明认为,自主物流是无人驾驶领域最容易落地的行业,进一步细化包括最后一公里的递送、监控、和仓内的点到点运输。

刘明及其团队选择了以深度强化学习为框架,工程模块化系统作为辅助的无人驾驶技术路线;在原型车上,采用了二类商用车底盘的配置。刘明认为,一台好车应该是“无人驾驶二类商用车底盘 + 完整的可量产无人车解决方案”的组合。

本届的CCF-GAIR智能交通主场,雷锋网邀请港科大自主驾驶中心主任刘明发表演讲。以下为刘明演讲全文,雷锋网新智驾进行了不改变原意的编辑:

今天我演讲的内容是低速无人驾驶系统的应用关键要素,同时也分享一下团队近期的技术发展和量产方面的合作进展。

过去十余年里,我们的团队参与了欧洲首部无人驾驶车、中国首部无人驾驶公交车的研发工作,领导了香港首部无人车的落地。

我分析了无人驾驶行业的近几年发展,同时也不断接触了无人驾驶的实际应用。从落地角度来看,我认为自主物流是最容易直接落地的场景。自主物流进一步细化包括最后一公里递送、监控和仓内的点到点运输。国内大部分行业领导者与巨头企业都这对些落地场景做了基本肯定。

港科大刘明:低速无人驾驶系统的应用关键要素

现在物流行业有一个基本的共识:未来三到五年,可能每天都会达到“双十一”期间的物流量,每天有十亿只包裹。但物流行业面临的问题是什么?面临着中国劳动力人口急剧下降的问题,人口红利从2016年就开始消失了。与此同时,包括农批市场、工业生产在内的劳作场景仍采用人力消耗的方式来做运输。

需求越来越多,人力越来越少,唯一的解决方案是无人系统,只有无人系统才能解决人越来越少的问题。想要找到答案,就要尝试不同的路径和过程。

无人系统有什么核心需求?提起园区内低速的无人驾驶系统,往往会让人联想到单一场景。其实不尽然。我们在某个园区实际场景的无人驾驶已运行半年,园区里有行人、自行车、货车,还有外来的轿车等复杂因素。 我们能做的是,在高精度地图的基础上,利用5G或4G网络提供平台层的的调度,通过车体自身的智能实现无人车点到点或者线到线的控制。

但园区内外的运输都面临着挑战,其中之一是场景的复杂性,如无引导的左转。我们的园区住着十几万的厂工,遇到上下班高峰时,无人驾驶车会淹没在人群和自行车群中。车不仅要开动,还要负责左转的复杂场景。这种情况每天都在发生,半年里我们接受了众多的考验。另一个挑战是无人驾驶在公开路面是否能出行?因为最后一公里的递送过程会涉及部分的公共路面。

面对这些挑战,低速无人驾驶应该选择怎样的技术路线?目前无人驾驶的技术分为两大类,一类是以端到端深度强化学习为主的模式,是偏高速车的常用方案;另一类是比较传统的工程模块化系统。我是学汽车出身,有五年汽车研究和十年无人驾驶研究的经验,很多时候倾向用工程模块化系统解决具体问题。

事实上, 这两种技术路线各有优劣势。端到端深度强化学习的优势在于容易做出working demo,劣势则是场景迁移能力比较弱,对样本的数量和质量都有较高要求。工程模块化系统的优势在于完成决策系统后,其他地方不会有太大纰漏,劣势在于实现精准的系统定位、障碍检测、决策、控制,需要大量的技术积累。

所以我们选择了以工程模块化为框架,深度强化学习作为辅助的模式,大致定义了一套从运营逻辑及数据接口、到无人系统核心技术模块、再到核心支撑技术的路线。简单来说包括感知系统、决策与预测系统,规划与控制以及相应的支撑技术六方面。

港科大刘明:低速无人驾驶系统的应用关键要素

在感知系统方面,我们利用三维感知建图与定位,多视觉惯导融合系统、单个实时雷达来获取场景。得到三维场景之后,我们会进行实时的三维几何场景分析、三维语义场景分析、视觉场景语义分析,然后利用嵌入式平台实现基于像素点的语义分割。在三维激光场景上,可以实现实时的激光场景语义分析、手持及车载大范围实时建图,路面环境可行区域检测等技术。各位有兴趣可以到我们实验室的网站ram-lab.com做进一步了解。在感知方面,我们可以说是世界级水平。

得到三维模型的下一步是决策预测,决策预测系统包括了实时多车间协调控制、多信息的融合等技术。车辆模型辅助动态决策利用视觉和激光检测的结果,对动态物体运动行为进行预测,结合车身的动力学模型,实现控制路径的决策和规划。

近几年行业在深度强化学习点到点导航、环境探索、多机器人任务分配方面投入比较多。但我们很早就建立了机器人感知实验室,是国内最早将深度强化学习应用到真实机器人上的机构。我们在2015年IROS上(International Conference on Intelligent Robots and Systems,国际智能机器人与系统大会)发表了文章,相关论文工作取得一些成绩。

除了决策预测,如何实现三维场景下的路径规划、基于迁移学习的强化学习、对复杂控制系统(如无人船、无人车)的控制都是需要解决的问题。

以上的内容都属于算法类型,与每个算法相对应的是后台的硬件或平台支撑。与感知系统对应的是传感器技术。我们目前有一款包含激光、视觉、惯性导航等七个传感器在内的集成硬件同步触发产品,并在产品基础之上开发了相当数量的算法,涵盖了姿态估计、建图、定位、识别、跟踪等,这套多感知内容获得了IEEE IROS最佳学生论文奖提名。

在算力方面,除了传统的CPU、GPU模式,我们也立项了FPGA模式来作为算法方案。近年来在算法方面,我们获奖20余项,包括中国人工智能最高奖吴文俊科技进步奖、和IEEE相关论文奖项12篇。

但最重要的是,无人车技术要落实到车辆上。算法就算再前沿,车本身才是决定量产的关键。我们做了一款近乎量产的车型。该车型可以安装36个10号国标周转箱,整体载重最高达1.5吨,目前在各个园区做相关推广以及部署尝试。我们会根据实际应用场景的需求来做配合工作,比如客户提出不同的标准箱要求,我们会进行箱体数量的排列、优化箱体设计与配重设计,电池换电、转向系统等一系列工作。在初始阶段,我们会采用标准商用车底盘将原型车先做出来,然后以量产件实现交付。

港科大刘明:低速无人驾驶系统的应用关键要素

刘明团队研发的无人车

基于以上内容,我们将这些技术用到了实际场景,涵盖从生产厂机到仓储企业,物流企业,码头,油田等各种场景。结合5G发展的大趋势,我们6月份参加了工信部的5G峰会,在现场提供了远程驾驶、无人驾驶等等观众体验平台。观众可以在数公里之外做到实时操控。

我们的无人驾驶车辆在某大型物流华东总部已经运行了一段时间。以前需要人力的运货使用无人车后,可以实现仓到仓的转运。从技术来看,无人车可以在有人的横道线前停车,其行驶速度跟一般园区行驶的物流车速度是接近的。我们将其控制在20-40km/h左右,这是无人车在无人驾驶模式下可以达到的真实速度。从效率上讲,无人车的效率与面包型物流车接近,还可以实现完全一致的载货量。

此外,我们跟韩国邮政协会达成了初步的三方战略协议,为其提供两台用于韩国邮政物流的无人车,这是韩国的首台无人货运车。我们也和台湾的中华邮政达成合作,20多位专家前来了解我们无人车的部署方式,希望共同解决台北物流园的最后一公里的问题。

最后一公里是无人车将货运到楼下,那最后一百米如何解决?没有电梯的情况下,货物如何上楼?我们的解决方案是相对小巧的爬楼机,其整体宽度在65-70cm,载重超100kg,它可以自己上楼。我们将最后一公里和最后一百米连接起来,形成了相对完整的解决方案。

有了技术、原型车、场景之后,下一步是什么?我本身职业是香港科技大学教授,可能无法完全从工厂或设备的角度来做无人车的开发工作。但我认为, 实现无人车最重要的理念是,首先要有一部好车。 最好的车就是标准的商用车。我们选用的是无人驾驶的二类商用车底盘,包括夸父系列,里面的ABS(防抱死制动系统)、EPS(电动转向系统)、ESP(车身电子稳定控制系统)、iBooster(线控制动系统)、EPB(电子驻车制动系统)及电池管理系统胎压检测等配置都和一般商用车差别不大,甚至很多配置只有在高端商用车上才能见到。

目前我们跟各地政府在展开合作。下一步计划是在某地建立厂区。厂区大约占地300亩,从包括激光传感器、BMS和车载电子部分在内的关键零部件、到场景测试、性能测试、焊涂总装、动力转向、低温可使用电池以及研究院。传统车下线之后会有一完整的检验检测设备,包括四轮定位、侧滑、车速、淋雨线等。无人车需要在传统车的基础上增加激光、编码器、AR/VR及远程控制中心。

厂区还可以进行无人驾驶应用的研究工作。整个厂区都会在华为的支持下进行5G全覆盖,在无人车路线、车站上都做了详细的部署。政府对我们整体的投资力度较大,我们主要是解决技术问题和与当地车厂一起解决量产工艺问题。厂区年底应该能够建完。

港科大刘明:低速无人驾驶系统的应用关键要素

随意打赏

无人驾驶 公司卡车无人驾驶国内无人驾驶无人驾驶场景无人驾驶汽车无人驾驶技术
提交建议
微信扫一扫,分享给好友吧。