腾讯发布国内首份可解释AI报告!层层分析「套娃式」AI算法
-
可解释 AI 的概述部分,主要概述了机器学习模型所面临的可解释性挑战,可解释 AI 的意义,可解释 AI 与透明度、问责制,以及可解释 AI 局部和全局可解释的两个维度。 -
可解释 AI 发展趋势部分,主要解释了AI的透明性和可解释性逐渐成为立法和监管关注的焦点,对政府公共部门使用的 AI 系统提出较高的透明度与可解释性要求,对商业领域的AI系统在可解释性方面避免作“一刀切”要求,行业积极探索可解释AI的技术解决方案。 -
在可解释 AI 的行业实践部分,主要介绍了谷歌模型卡片(Model Cards)机制,IBM 的 AI 事实清单(AI Fact Sheets)机制,微软的数据集数据清单(datasheets for datasets)机制,其他可解释性AI工具以及可解释AI的腾讯实践。 -
在第四部分,主要讲述了对可解释AI未来发展的几点看法,包括立法和监督宜遵循基于风险的分级分类分场景治理思路;探索建立合理适度的、适应不同行业与应用场景的AI可解释性标准;探索可解释的替代性机制,形成对AI算法的有效约束;引导、支持行业加强可解释AI研究与落地,确保科技向善;增强社会公众的算法素养,探索人机协同的智能范式。
即使AI系统并非完全可解释,我们也可以利用AI系统来提高决策的透明度。对人类决策的解释,也许不能准确反映出影响人类决策的因素或无意识偏见。实际上,即使 AI 系统所做出的决策并不能被完全解释,但相比理解人类如何做出类似决策,我们也可以更好地理解AI系统在整体上是如何做出决策的。而且,AI的最大价值在于可以在复杂情形中发现、识别超出人类理解的模式( pattern ),因此根据定义,这样的AI系统不会以人类可以理解的方式具有完全的可解释性。就像取得驾照,相信汽车可以安全驾驶,并不需要人人都成为专业的汽车工程师一样,当使用AI系统时,解释并不总是必须的。长远来看,政府、社会、企业、行业、科研机构、用户等主体需要共同探索科学合理的可解释AI落地方案及相关的保障与防护机制,推动科技问雪。
可解释AI先驱、深理工潘毅教授:AI制药,要多做「用结构找小分子」的逆向工程 | GAIR 2021
2021-12-26
ACM与IEEE双Fellow、华人女计算机科学家周以真:可信 AI,未来可期
2021-10-11
联邦学习首个国际标准正式发布!
2021-04-02
雷峰网
(公众号:雷峰网)
雷峰网
雷峰网
(公众号:雷峰网)
雷峰网
雷峰网原创文章,未经授权禁止转载。详情见。