工程师详解:Tesla Motors 的电池管理系统究竟好在哪里?
雷锋网按:本文作者 叶磊Ray,演技派工程师。
(Tesla Motors,Via: tocks.org )
自从Model S上市以来视乎已经被大家拆解无数遍了,这也从一个侧面印证了Tesla在电动汽车市场初期的标杆地位。
| 动力总成构成
Model S动力总成主要分以下几部分:
-
动力电池系统ESS
-
交流感应电机Drive Unit
-
车载充电机Charger
-
高压配电盒 HV Junction Box
-
加热器 PTC heater
-
空调压缩机 A/C compressor
-
直流转换器DCDC
Model S采用三相交流感应电机,并且将电机控制器、电机、以及传动箱集成与一体。尤其是将电机控制器也封装成圆柱形,与电机互相对应,看上去像是双电机。从设计上来看集成度高、对称美观。中间的传动箱采用了固定速比(9.73:1)方案。85KWh版本电机峰值功率270KW,扭矩440Nm。
充电系统支持三种充电方式:
1、超级充电桩DC快充
超级充电桩可直接输出120KW对ESS进行充电,一个小时以内能充满。
2、高功率壁挂充电
在后排座椅下面有两个车载充电器,一主一从。主充电器属于默认开放使用,功率10KW,差不多8小时能充满。slave充电器的硬件虽然已经安装在车上了,但需要额外支付1.8万才能激活,可使充电能力翻倍。这种硬件早已配置好,之后通过license收费的方式和IBM的服务器如出一辙。目前Tesla已经把这个策略用在了动力电池上,60版本上实际装了70多度电,预留的那部分容量刚好避免满充满放,有助于延长电池寿命,因此入手低配版也是一个有性价比的选择。
3、220V家用插座充电
充电功率3kw左右,充满电大概30个小时。把充电器放在车上,即使到了完全没有充电基础设施的地方也能利用普通家用插头充上电。
热管理部分有意思的地方在于Model S用一个四通转换阀实现了冷却系统的串并联切换。其目的我分析主要是根据工况选择最优热管理方式。当电池在低温状态下需要加热时,电机冷却回路与电池冷却回路串联,从而使电机为电池加热。当动力电池处于高温时,电机冷却回路与电池冷却回路并联,两套冷却系统独立散热。这样的热管理方式还是比较巧妙的。
| 电池PACK
先看一下未拆解前的PACK,对外一共有3组接口。分别是低压接口、高压接口、冷却接口,并且全部采用了快插式方案。说明Tesla在设计电池组系统的时候充分考虑了换电模式的技术要求,即便现在很少有换电的需求但这个基因始终保留了下来。高压接插器中较粗的Pin一方面起到了定位的作用,同时也是接地点,较细的Pin用于实现高压互锁功能。
PACK前部顶面上设计了防水透气阀,利用气体分子与液体及灰尘颗粒的体积大小数量级差,让气体分子通过,而液体、灰尘无法通过,从而实现防水透气的目的,避免水蒸气在PACK内部凝结。
PACK上部用了非常多的固定螺丝,因此白色的绝缘垫通过胶粘在了Pack上,除了起到了绝缘防火的作用以外,还可以起到一定的防水的作用。PACK的上盖是死死用胶粘住的,即使卸了所有螺丝依然无法打开。记得在14年的炎炎夏日里我们七八个人“生掰硬撬”一小时才得以破坏性的扒开。当时觉得Tesla在设计的时候一定是抱着破斧沉舟的理念,根本没打算之后的维修,所以PACK上自然也没有手动维修开关,仅仅留了一个保险丝更换口。
Tesla下托盘以铝合金型材作为主要承载框型骨架,骨架底部焊接整块铝板。 拆解的是一款85KWH高配版,最右侧多堆叠了两个Module。PACK两侧布置了大量防爆阀(共85个)。在拆解的过程中发现PACK里总是用零散的绝缘板将高压器件隔开,而固定绝缘板的方式通常是胶水,像是用狗皮膏药把PACK里面打满了补丁,很难想象在这样复杂工艺在量产过程中是如何进行的。猜测是在设计之初考虑的不充分导致了后续只能无奈的通过打补丁的方式进行了。
BMS在PACK内部几乎是完全裸露的,也许是为了减轻重量吧,但也带来一定的风险。
Module之间的水冷系统采用的是
并联结构而不是互相串联
,其目的在于
确保了流进每个Module的冷却液有着相近的温度
。
Module之间的 高压电气连接采用左右交错的排布方式 ,而不是从PACK尾部到顶部,再从顶部回到尾部这种比较简单的连接方式。猜测是为了防止形成大电流回环从而产生较强辐射干扰。
电流采样仅仅采用了一个ISAscale工业级的Shunt,通过SPI总线与BMU进行通信。此前对标荣威E50上A123动力电池的解决方案,其采用了shunt和Hall双备份的措施。毕竟 电流值 在ESS系统中是一个极其关键的参数。
| 电池Module
由于选用了 NCA的电芯 ,在能量密度上Tesla可谓是遥遥领先,Pack的能量密度比很多车型的Cell都高出一截。下图是高配和低配在module上的差异,低配module每并少了10颗cells,串联数量都是6串,因此对于电池管理而言并没有太大差异。从汇流板可以看出与Busbar相连的部分颜色明显不同,此处是在表面进行了镀镍处理,防止氧化。
Module热交换设计上由于Tesla选择了18650电池必然导致了Coolant pipe必须设计得异常复杂,并且电池是用胶水牢牢固定于Module中,完全不具备维修和梯次利用的可能。而选用方形电池的I3和Volt更便于电芯和冷却系统的集成。
Volt在每个电芯间设计了散热曡层,使得热交换面积更大效果更好,推测这种方案在未来可能成为主流。
| 电池管理系统BMS
BMS采用主从架构,主控制器(BMU)负责高压、绝缘检测、高压互锁、接触器控制、对外部通信等功能。从控制器(BMB)负责单体电压、温度检测,并上报BMU。
BMU具备主副双MCU设计,副MCU可检测主MCU工作状态,一旦发现其失效可获取控制权限。比较幽默的是BMU上居然有一个手动reset的按钮,刚看到的时候简直不敢相信这是汽车产品级ECU,更像是是个电脑主板。而且把过强电电流的预充电接触器直接放在了BMU上也是一个大胆的设计。
下图是Tesla、BMW i3、A123三家的模块监控BMB的对比。具体参数如下:
传说中Tesla检测了7000多节的电池电压,其实只是将74节电池并联检测一个点,传说监控了每个单体的温度,其实444节电池仅有两个温度探测点。传说能均衡住每一节电池,实际上均衡电流仅0.1A,对于230Ah的电池来说杯水车薪。尤其是在电压监控冗余设计上,BMW(preh)采用了LT6801,A123采用IC8进行了硬件比较,一旦MCU失效或者通信异常时可以直接在硬件上触发报警。相比之下Tesla设计得更简单。尤其是采用了UART通信而不是CAN,更像是IT公司的解决方案。
|
单体电池Cell
从松下提供的Spec上看在0.5C充/1C放(100%DOD)的条件下500cycle后容量降至BOL状态时的68%,衰减比较严重。
同样是1C/1C充放150cycle的实验,上图I3和Model S电池的比较。
上面几张循环寿命数据很好地说明了 为什么Model S突破性地在乘用车内装进了85kwh这么巨大的电池 。因为松下18650电池在1C左右的倍率下循环寿命很差。所以必须将通过高容量以降低同等工况下的倍率,保证更久的循环寿命;同时大容量的电池也确保了车辆在全生命周期里循环次数足够少。按百公里电耗20KWH计算,20万公里对于85KWH的PACK而言也不过只有470cycle。
随着更多的电池企业针对汽车领域定制电池的标准化和批量化,18650电池所具备的低成本和高一致性的优势将迅速消失,即使Tesla一度希望通过开放专利的方式拉拢技术路线站队,但看似并不成功。 开放专利噱头和宣传效果大于实际意义。
" _src="https://pic2.zhimg.com/f8dcc01c66be0fbc4d4023d04b734cad_r.png">">
不过在那个电动汽车供应链还不成熟的年代,Tesla几乎是凭着极佳的技术集成思路硬是在各种非汽车级选型中“凑”出了一辆跨时代意义的产品。
所以硬要说Tesla在动力电池上比传统车企做得好,倒不如说Tesla做了他们不敢做的事 。传统车企完善的供应链体系、长期积累的标准规范、庞大的市场占有量这几个方面就推动电动汽车这件事上看反而成了包袱。
Tesla可以毫无负担放弃汽车供应链在工业级产品中选型,可以暂时将Autosar、ISO26262等放一放,可以不用像传统车企一样担心在电动车技术走得太激进,导致出了起火事、失控等事故而影响传统车型的销量。但此后Tesla和传统车企竞争优势依然是这套历史条件制约下的解决方案么?我想肯定不是。
那Tesla的核心竞争力应该是什么呢?电池管理软件算法。
| Tesla的核心优势在于基础技术
个人认为电池管理技术并非Tesla的核心优势,而是基础技术。如同1983年apple推出的Lisa PC的核心技术也绝不在于使用了鼠标,2001年的ipod核心技术不在于1.8寸硬盘。
2014年国内第一批Tesla上市时有幸参与了Model S拆解,主要负责了ESS部分的Benchmark。不得不说当完成该项目时,心中对于Tesla的神秘光环和传奇色彩褪色不少。如同美军缴获第一架米格25战斗机,激动得想一探其强劲性能的究竟,结果并未发现在基础技术上有明显颠覆性的突破。可以说Tesla单就每一项细节技术而言并非高人一等,甚至某些部分的设计略显草率(比如ESS系统的低集成化造成制造工艺和后期维修的难度、较多非汽车级零部件及方案应用带来的风险等),但将所有在工程师眼中并不完美的子部件集成在一起之后,依然呼之欲出了一款惊艳的产品。
Tesla的成就更多是在产品定义上的准确把握而非技术上的核心优势。 为什么既拥有强大整车制造能力又具备锂 电池技术 的日本没有出现高性能的电动车?
因为在当时(即便是现在也可能如此)他们根本不认为这样的产品是足够安全的、价格是能让人接受的。为什么即便在已经证明了Tesla的市场价值后,德国车企在电动汽车的推进上依然不紧不慢,因为拿他们的技术标准去套Tesla的产品,无论是设计选型还是制造工艺根本就不成熟。作为崭新的汽车公司,不拥有长期的knowhow积累可能撞上前人早已知道应该躲避的暗礁,但同时也有可能因为卸下各种限制的包袱而第一个发现新的大陆。
目前汽车行业已经有越来越多的新进入者加入,可以拿过去10年手机行业的变迁作为参照,期间诺基亚的衰弱,苹果、谷歌的崛起不仅仅是企业实力的竞争,更是通信产业链和计算机软件产业链争夺手机属性的竞争。如果手机还是通信技术推动的产品,那苹果、谷歌不一定是诺基亚的对手,而当手机成为计算机和软件业推动的产品,那为诺基亚编写App、为手机与PC充分互通的供应链与苹果、谷歌相比自然不在一个数量级,又如何有胜算呢。
同理我们试想未来的汽车的属性会是什么? 是操控性能卓越的交通工具,还是能载人移动的智慧机器人?这个属性的定义将决定是传统车企在未来生产、制造、销售中是否依旧占据供应链优势,还是以人工智能、云计算技术为核心业务的高科技公司在未来产业供应链结构中占到更大的比重。
因此Tesla在动力电池领域的技术较传统车企而言,不但不是优势,在未来反而可能成为劣势。反倒是无人驾驶是其救命的稻草。
| 写在后面
一旦从工程师的立场去看产品,往往能揭穿企业想要营造出的完美。 毕竟产品设计的过程必然是一个妥协和取舍的过程,而企业在产品营销上往往试图用“不妥协”“不将就”之类的概念(比如国内的某些手机公司),与设计的本质相违背。
但当自己是一个消费者的时候,Tesla依然对我有着极强的吸引力 。其吸引力的来源根本不在于运用了先进或是落后的技术,而是 凌驾于技术堆叠和性能参数之上的产品气质 ,这个气质是众多人想要而其他车型无法给予的感受,我想这是Tesla最成功的地方吧。
雷锋网 (搜索“雷锋网”公众号关注) 注:本文由作者授权发布雷锋网,转载请联系授权并保留出处和作者,不得删减内容。