刷脸进站、刷脸支付、刷脸签到……人民日报:会不会刷走安全

我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

随着数据的积累、计算机算力的跃升和算法的优化,人工智能正在让生活变得高效。语音识别、图像识别使身份认证更可信赖,短短几秒就能证明“你就是你”;智能诊疗和自动驾驶,更让人们看到了战胜疾病、减少事故的新机会;人工智能还可以轻松战胜围棋高手,写出优美的诗句……其自主性和创造性正在模糊人和机器的分野。

但是,当隐私侵犯、数据泄露、算法偏见等事件层出不穷时,人们又不得不反思:人工智能的持续进步和广泛应用带来的好处是巨大的,为了让它真正有益于社会,同样不能忽视的还有对人工智能的价值引导、伦理调节以及风险规制。

“刷脸”应用更广泛,对隐私权的威胁值得重视

“刷脸”进站、“刷脸”支付、“刷脸”签到、“刷脸”执法……人脸识别技术正走进更为广阔的应用场景,与指纹、虹膜等相比,人脸是一个具有弱隐私性的生物特征,因此,这一技术对于公民隐私保护造成的威胁性尤其值得重视。“人脸图像或视频广义上讲也是数据,如果没有妥善保管和合理使用,就会容易侵犯用户的隐私。”中国社会科学院哲学研究所研究员段伟文说。

通过数据采集和机器学习来对用户的特征、偏好等“画像”,互联网服务商进而提供一些个性化的服务和推荐等,从正面看是有利于供需双方的一种互动。但对于消费者来说,这种交换是不对等的。就频频发生的个人数据侵权的事件来看,个人数据权利与机构数据权力的对比已经失衡,在对数据的收集和使用方面,消费者是被动的,企业和机构是主动的。段伟文表示,“数据实际上成为被企业垄断的资源,又是驱动经济的要素。”如果商家只从自身利益出发,就难免会对个人数据过度使用或者不恰当披露。

大数据时代,个人在互联网上的任何行为都会变成数据被沉淀下来,而这些数据的汇集都可能最终导致个人隐私的泄露。”湖南师范大学人工智能道德决策研究所所长李伦认为,用户已经成为被观察、分析和监测的对象。

算法应更客观透明,要避免歧视与“杀熟”

在信息爆炸的时代,数据的处理、分析、应用很多都是由算法来实现的,越来越多的决策正被算法所取代。从内容推荐到广告投放,从信用额度评估到犯罪风险评估,算法无处不在——它操作的自动驾驶或许比司机更加安全,它得出的诊断结果可能比医生更准确,越来越多的人开始习惯一个由算法构建的“打分”社会。

作为一种信息技术,算法在拨开信息和数据“迷雾”的同时,也面临着伦理上的挑战:利用人工智能来评估犯罪风险,算法可以影响刑罚;当自动驾驶汽车面临危险,算法可以决定牺牲哪一方;应用于武器系统的算法甚至可以决定攻击的目标……由此引发了一个不容忽视的问题:如何确保算法的公正?

腾讯研究院法律研究中心高级研究员曹建峰认为,即使作为一种数学表达,算法本质上也是“以数学方式或者计算机代码表达的意见”。算法的设计、模型、目的、成功标准、数据使用等,都是编程人员的主观选择,偏见会有意或者无意地嵌入算法,使之代码化。“算法并不客观,在算法决策起作用的诸多领域,算法歧视也并不鲜见。”

“算法决策多数情况下是一种预测,用过去的数据预测未来的趋势,算法模型和数据输入决定着预测的结果,因此这两个要素也就成为算法歧视的主要来源。”曹建峰解释说,除了主观因素以外,数据本身也会影响算法的决策和预测。“数据是社会现实的反映,数据可能是不正确、不完整或者过时的,训练数据本身也可能是歧视性的,用这样的数据训练出来的算法系统,自然也会带上歧视的烙印。”

2016年3月,微软人工智能聊天机器人Tay上线,在与网民互动过程中,很短时间内就“误入歧途”,集性别歧视、种族歧视于一身,最终微软不得不让它“下岗”。曹建峰认为,算法倾向于将歧视固化或放大,使歧视长存于整个算法之中。因此,如果将算法应用在犯罪评估、信用贷款、雇佣评估等关系人们切身利益的场合,一旦产生歧视,就可能危害个人乃至社会的利益。

此外,深度学习还是一个典型的“黑箱”算法,可能连设计者都不知道算法如何决策,因而要在系统中发现是否存在歧视和歧视根源,技术上也较为困难。“算法的‘黑箱’特征使其决策逻辑缺乏透明性和可解释性。”李伦说,随着大数据“杀熟”、算法歧视等事件的出现,社会对算法的质疑也逐渐增多。政府和企业在使用数据的过程中,必须提高对公众的透明度,让选择权回归个人。

加强核查监管,加大对数据滥用等行为的惩戒力度

2017年7月,国务院印发《新一代人工智能发展规划》(以下简称《规划》)。《规划》强调,促进人工智能行业和企业自律,切实加强管理,加大对数据滥用、侵犯个人隐私、违背道德伦理等行为的惩戒力度。

“虽然‘刷脸’的应用越来越多,但人工智能目前仍处于起步阶段,需加大对数据和隐私的保护力度,关注和防范由算法滥用所导致的决策失误和社会不公。”在个人数据权利的保护方面,段伟文建议,应促使数据交易各方对自己的行为负责,让每个人知道自己的数据如何被处理,特别是用于其他用途的情形,减少数据滥用,让人们清楚知道自己的“脸”还是否安全。

段伟文认为,要进一步加强人工智能的伦理设计,对算法的理论预设、内在机制与实践语境等进行全流程追问与核查,从算法决策的结果和影响中的不公正入手,反向核查其机制与过程有无故意或不自觉的曲解与误导,揭示存在的问题,并促使其修正和改进。

在曹建峰看来,应对人工智能带来的伦理问题,一是要构建算法治理的内外部约束机制,将人类社会的法律、道德等规范和价值嵌入人工智能系统;二是在人工智能研发中贯彻伦理原则,促使研发人员遵守基本的伦理准则;三是对算法进行必要的监管,提升算法自身的代码透明性和算法决策的透明性;四是针对算法决策和歧视以及造成的人身财产损害,提供法律救济。

“我们生活在一个人机共生的时代,人类与机器之间势必将发生各种冲突和矛盾,仅靠法律和制度很难完全解决。”李伦表示,人们还应努力提升自身的科学素养,主动维护自身的权利,社会也应尽快建立讨论人工智能伦理问题的公共平台,让各方充分表达意见,促进共识的形成。

(原题为《“刷脸”会不会刷走安全》)

本文被转载1次

首发媒体 腾讯科技 | 转发媒体

随意打赏

上海地铁刷脸进站春运刷脸进站人民日报社论人民日报微博刷脸签到刷脸进站
提交建议
微信扫一扫,分享给好友吧。