ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)
1 新智元编译
来源:bbvaopenmind.com
作者: Amund Tveit
译者:刘小芹 胡祥杰
新智元启动新一轮大招聘 :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。
简历投递:j obs@aiera.com.cn
HR 微信: 13552313024
新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、 高于业界平均水平的工资和奖金。
加盟新智元,与人工智能业界领袖携手改变世界。
【新智元导读】 ICLR 2017 将于2017年4月24日至26日在法国土伦(toulon)举行,11月4日已经停止接收论文。本文汇总了本年度NLP、无监督学习、对抗式生成、自动编码、增强学习、随机循环梯度渐变、RNN等多个领域的150篇论文。其中不乏 Yoshua Bengio、Ian Goodfellow、Yann LeCun、李飞飞、邓力等学者的作品。从收录的论文主题来看,生成和对抗生成式网络的研究成为热点,一共有45篇论文被提交,数量排在第一。文内附下载。
ICLR 2017 将于2017年4月24日至26日在法国土伦举行,向大会提交的深度学习论文非常多,无疑这将成为一场盛会(下图展示了提交的论文题目中最频繁出现的单词),可以看到,深度、学习、递归、模型、网络、表征、对抗式、生成等成为热词。
与ICLR 2016 相比有哪些变化?
将使用 OpenReview(而不是 CMT)作为会议通道。此外,提交的论文将交由 OpenReview 管理(无需提交到 arXiv)。
审查程序将变成两轮。第一轮中,审稿人只能提出澄清性的疑问。程序委员会将评出最佳审稿奖,得奖的审稿人将被列入 ICLR 2018 的候选人名单中。研讨会通道鼓励那些具有高度创新性,但可能未得到充分验证的提交论文。
评审委员会说,采用 OpenReview 的目标是提高整体审稿过程的质量。OpenReview 可以让作者随时对论文的评论进行回复。此外,社区中的任何人都可以对提交的论文进行评论,审稿者可以利用公开讨论来提高他们对论文的理解和评级。
下文是对提交给 ICLR 2017 的论文中与自然语言处理(NLP)相关的论文的概览,由 前 Google 工程师、 ZEDGE数据副总裁,AI 顾问/投资者, Memkite 和 Atbrox 的创始人/联合创始人 Amund Tveit整理。
ICLR 2017 � NLP 论文
在新智元微信公众号回复1113,下载全部37篇论文。
1.字符/词/句子表征
-
Character-aware Attention Residual Network for Sentence Representation
作者: Xin Zheng, Zhenzhou Wu
-
Program Synthesis for Character Level Language Modeling
作者: Pavol Bielik, Veselin Raychev, Martin Vechev
-
Words or Characters? Fine-grained Gating for Reading Comprehension
作者: Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov
-
Deep Character-Level Neural Machine Translation By Learning Morphology
作者: Shenjian Zhao, Zhihua Zhang
-
Opening the vocabulary of neural language models with character-level word representations
作者: Matthieu Labeau, Alexandre Allauzen
-
Unsupervised sentence representation learning with adversarial auto-encoder
作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang
-
Offline Bilingual Word Vectors Without a Dictionary
作者: Samuel L. Smith, David H. P. Turban, Nils Y. Hammerla, Steven Hamblin
-
Learning Word-Like Units from Joint Audio-Visual Analylsis
作者:David Harwath, James R. Glass
-
Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling
作者: Hakan Inan, Khashayar Khosravi, Richard Socher
-
Sentence Ordering using Recurrent Neural Networks
作者: Lajanugen Logeswaran, Honglak Lee, Dragomir Radev
2. 搜索/问答/推荐系统
-
Learning to Query, Reason, and Answer Questions On Ambiguous Texts
作者: Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P. Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, Satinder Singh
-
Group Sparse CNNs for Question Sentence Classification with Answer Sets
作者: Mingbo Ma, Liang Huang, Bing Xiang, Bowen Zhou
-
CONTENT2VEC: Specializing Joint Representations of Product Images and Text for the task of Product Recommendation
作者: Thomas Nedelec, Elena Smirnova, Flavian Vasile
-
Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce
作者: Tom Zahavy, Alessandro Magnani, Abhinandan Krishnan, Shie Mannor
3.词/句嵌入
-
A Simple but Tough-to-Beat Baseline for Sentence Embeddings
作者: Sanjeev Arora, Yingyu Liang, Tengyu Ma
-
Investigating Different Context Types and Representations for Learning Word Embeddings
-
作者: Bofang Li, Tao Liu, Zhe Zhao, Xiaoyong Du
-
Multi-view Recurrent Neural Acoustic Word Embeddings
作者: Wanjia He, Weiran Wang, Karen Livescu
-
A Self-Attentive Sentence Embedding
作者: Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio
(推荐关注)
5. Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks
作者: Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg
4.多语言/翻译/情感
-
Neural Machine Translation with Latent Semantic of Image and Text
作者: Joji Toyama, Masanori Misono, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo
-
Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context
作者: Shyam Upadhyay, Kai-Wei Chang, James Zhou, Matt Taddy, Adam Kalai
-
Learning to Understand: Incorporating Local Contexts with Global Attention for Sentiment Classification
作者: Zhigang Yuan, Yuting Hu, Yongfeng Huang
-
Adaptive Feature Abstraction for Translating Video to Language
作者: Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin
-
A Convolutional Encoder Model for Neural Machine Translation
作者: Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin
-
Fuzzy paraphrases in learning word representations with a corpus and a lexicon
作者: Yuanzhi Ke, Masafumi Hagiwara
-
Iterative Refinement for Machine Translation
作者: Roman Novak, Michael Auli, David Grangier
-
Vocabulary Selection Strategies for Neural Machine Translation
作者: Gurvan L’Hostis, David Grangier, Michael Auli
5.语言模型/文本理解/配对/压缩/分类/++
-
A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks
作者: Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, Richard Socher
-
Gated-Attention Readers for Text Comprehension
作者: Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov
-
A Compare-Aggregate Model for Matching Text Sequences
作者: Shuohang Wang, Jing Jiang
-
A Context-aware Attention Network for Interactive Question Answering
作者: Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav
-
FastText.zip: Compressing text classification models
作者: Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve Jegou, Tomas Mikolov
-
Multi-Agent Cooperation and the Emergence of (Natural) Language
作者: Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni
-
Learning a Natural Language Interface with Neural Programmer
作者: Arvind Neelakantan, Quoc V. Le, Martin Abadi, Andrew McCallum, Dario Amodei
-
Learning similarity preserving representations with neural similarity and context encoders
作者: Franziska Horn, Klaus-Robert Müller
-
Adversarial Training Methods for Semi-Supervised Text Classification 作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow
(推荐关注)
-
Multi-Label Learning using Tensor Decomposition for Large Text Corpora
作者: Sayantan Dasgupta
以下论文均可在 https://amundtveit.com /直接下载
ICLR 2017 ―无监督深度学习论文
-
Unsupervised Learning Using Generative Adversarial Training And Clustering � 作者: Vittal Premachandran, Alan L. Yuille
-
An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax
作者: Wentao Huang, Kechen Zhang
-
Unsupervised Cross-Domain Image Generation
作者: Yaniv Taigman, Adam Polyak, Lior Wolf
-
Unsupervised Perceptual Rewards for Imitation Learning
作者: Pierre Sermanet, Kelvin Xu, Sergey Levine
-
Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning
作者: William Lotter, Gabriel Kreiman, David Cox
-
Unsupervised sentence representation learning with adversarial auto-encoder � 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang
-
Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks
-
作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick
-
Generalizable Features From Unsupervised Learning
作者: Mehdi Mirza, Aaron Courville, Yoshua Bengio
(推荐关注)
10. Reinforcement Learning with Unsupervised Auxiliary Tasks
作者: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, Koray Kavukcuoglu
11. Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
作者: Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt
12. Unsupervised Learning of State Representations for Multiple Tasks
作者 : Antonin Raffin, Sebastian Höfer, Rico Jonschkowski, Oliver Brock, Freek Stulp
13. Unsupervised Pretraining for Sequence to Sequence Learning
作者: Prajit Ramachandran, Peter J. Liu, Quoc V. Le
14. Unsupervised Deep Learning of State Representation Using Robotic Priors
作者 : Timothee LESORT, David FILLIAT
15. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
作者 : Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan
16. Deep unsupervised learning through spatial contrasting
作者 : Elad Hoffer, Itay Hubara, Nir Ailon
ICLR 2017 ―自动编码深度学习论文
以下论文均可在 https://amundtveit.com /直接下载
-
Revisiting Denoising Auto-Encoders
作者:Luis Gonzalo Sanchez Giraldo
-
Epitomic Variational Autoencoders
作者: Serena Yeung, Anitha Kannan, Yann Dauphin, Li Fei-Fe i
(推荐关注)
3. Unsupervised sentence representation learning with adversarial auto-encoder
作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang
4. Tree-Structured Variational Autoencoder
作者: Richard Shin, Alexander A. Alemi, Geoffrey Irving, Oriol Vinyals
5. Lossy Image Compression with Compressive Autoencoders
作者: Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár
6. Variational Lossy Autoencoder
作者 : Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel
7. Stick-Breaking Variational Autoencoders
作者: Eric Nalisnick, Padhraic Smyth
8. ParMAC: distributed optimisation of nested functions, with application to binary autoencoders
作者: Miguel A. Carreira-Perpinan, Mehdi Alizadeh
9. Discrete Variational Autoencoders 作者: Jason Tyler Rolfe
10. Deep Unsupervised Clustering with Gaussian Mixture\Variational Autoencoders
作者: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew,C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan
11. Improving Sampling from Generative Autoencoders with Markov Chains
作者: Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath
ICLR 2017 ―增强学习深度学习论文
以下论文均可在 https://amundtveit.com /直接下载
-
Stochastic Neural Networks for Hierarchical Reinforcement Learning
作者: Carlos Florensa, Yan Duan, Pieter Abbeel
-
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning
作者 : Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi C
hen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel
-
Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning
作者 : Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, Se
rgey Levine
-
Deep Reinforcement Learning for Accelerating the Convergence Rate
作者 : Jie Fu, Zichuan Lin, Danlu Chen, Ritchie Ng, Miao Liu, Nicholas Leonard, Jiashi Feng, Tat-Seng Chua
-
Generalizing Skills with Semi-Supervised Reinforcement Learning
作者: Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine
-
Learning to Perform Physics Experiments via Deep Reinforcement Learning � 作者: Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Batta
glia, Nando de Freitas
-
Designing Neural Network Architectures using Reinforcement Learning
作者: Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar
-
Reinforcement Learning with Unsupervised Auxiliary Tasks
作者 : Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,David Silver, Koray Kavukcuoglu
-
Options Discovery with Budgeted Reinforcement Learning
作者: Aurelia Lon, Ludovic Denoyer
-
Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU
作者: Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons,Jan Kautz
-
Multi-task learning with deep model based reinforcement learning
作者:Asier Mujika
-
Neural Architecture Search with Reinforcement Learning
作者: : Barret Zoph, Quoc Le
-
Tuning Recurrent Neural Networks with Reinforcement Learning
作者: : Natasha Jaques, Shixiang Gu, Richard E. Turner, Douglas Eck
-
RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning
作者: Yan Duan, John Schulman, Xi Chen, Peter Bartlett, Ilya Sutskever, Pieter Abbeel
-
Learning to Repeat: Fine Grained Action Repetition for Deep Reinforcement Learning
作者: Sahil Sharma, Aravind S. Lakshminarayanan, Balaraman Ravindran
-
Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening
作者: Frank S.He, Yang Liu, Alexander G. Schwing, Jian Peng
-
Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning
作者 : Joshua Achiam, Shankar Sastry
-
Learning to Compose Words into Sentences with Reinforcement Learning
作者: Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling
-
Spatio-Temporal Abstractions in Reinforcement Learning Through Neural Encoding
作者: Nir Baram, Tom Zahavy, Shie Mannor
-
Modular Multitask Reinforcement Learning with Policy Sketches
作者: Jacob Andreas, Dan Klein, Sergey Levine
-
Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear
作者: Zachary C. Lipton, Jianfeng Gao, Lihong Li, Jianshu Chen, Li Deng
(推荐关注)
ICLR 2017 生成和对抗式生成论文(45篇)
以下论文均可在 https://amundtveit.com /直接下载
-
Unsupervised Learning Using Generative Adversarial Training And Clustering
作者: Vittal Premachandran, Alan L. Yuille
-
Improving Generative Adversarial Networks with Denoising Feature Matching
作者: David Warde-Farley, Yoshua Bengio
-
Generative Adversarial Parallelization
作者: Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor
-
b-GAN: Unified Framework of Generative Adversarial Networks
作者: Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo
-
Generative Adversarial Networks as Variational Training of Energy Based Models
作者:Shuangfei Zhai, Yu Cheng, Rogerio Feris, Zhongfei Zhang
-
Boosted Generative Models
作者: Aditya Grover, Stefano Ermon
-
Adversarial examples for generative models
作者: Jernej Kos, Dawn Song
-
Mode Regularized Generative Adversarial Networks
作者: Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li
-
Variational Recurrent Adversarial Deep Domain Adaptation
作者:: Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu
-
Structured Interpretation of Deep Generative Models
作者: N. Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank Wood, Noah D. Goodman, Pushmeet Kohli, Philip H.S. Torr
-
Inference and Introspection in Deep Generative Models of Sparse Data
作者:Rahul G. Krishnan, Matthew Hoffman
-
Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy
作者: Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, Arthur Gretton
-
Unsupervised sentence representation learning with adversarial auto-encoder
作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang
-
Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks
作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick
-
A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Noise
作者: Beilun Wang, Ji Gao, Yanjun Qi
-
On the Quantitative Analysis of Decoder-Based Generative Models
作者: Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger Grosse
-
Evaluation of Defensive Methods for DNNs against Multiple Adversarial Evasion Models
作者:Xinyun Chen, Bo Li, Yevgeniy Vorobeychik
-
Calibrating Energy-based Generative Adversarial Networks
作者: Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, Aaron Courville
-
Inverse Problems in Computer Vision using Adversarial Imagination Priors
作者: Hsiao-Yu Fish Tung, Katerina Fragkiadaki
-
Towards Principled Methods for Training Generative Adversarial Networks作者: Martin Arjovsky, Leon Bottou
-
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
作者: Dilin Wang, Qiang Liu
-
Multi-view Generative Adversarial Networks
作者: Mickaël Chen, Ludovic Denoyer
-
LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
作者: Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh
-
Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
作者: Emily Denton, Sam Gross, Rob Fergus
-
Generative Adversarial Networks for Image Steganography
作者: Denis Volkhonskiy, Boris Borisenko, Evgeny Burnaev
-
Unrolled Generative Adversarial Networks
作者: Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein
-
Generative Multi-Adversarial Networks
作者: Ishan Durugkar, Ian Gemp, Sridhar Mahadevan
-
Joint Multimodal Learning with Deep Generative Models
作者: Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo
-
Fast Adaptation in Generative Models with Generative Matching Networks
作者: Sergey Bartunov, Dmitry P. Vetrov
-
Adversarially Learned Inference
作者: Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, Aaron Courville
-
Perception Updating Networks: On architectural constraints for interpretable video generative models
作者: Eder Santana, Jose C Principe
-
Energy-based Generative Adversarial Networks
作者:Junbo Zhao, Michael Mathieu, Yann LeCun
-
Simple Black-Box Adversarial Perturbations for Deep Networks
作者: Nina Narodytska, Shiva Kasiviswanathan
-
Learning in Implicit Generative Models
作者: Shakir Mohamed, Balaji Lakshminarayanan
-
On Detecting Adversarial Perturbations
作者: Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff
-
Delving into Transferable Adversarial Examples and Black-box Attacks
作者: Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song
-
Adversarial Feature Learning
作者:Jeff Donahue, Philipp Krähenbühl, Trevor Darrell
-
Generative Paragraph Vector
作者: Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, Xueqi Cheng
-
Adversarial Machine Learning at Scale
作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio
-
Adversarial Training Methods for Semi-Supervised Text Classification
作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow
-
Sampling Generative Networks: Notes on a Few Effective Techniques
作者: Tom White
-
Adversarial examples in the physical world
作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio
-
Improving Sampling from Generative Autoencoders with Markov Chains
作者:Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath
-
Neural Photo Editing with Introspective Adversarial Networks
作者: Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston
-
Learning to Protect Communications with Adversarial Neural Cryptography
-
作者: Martín Abadi, David G.
ICLR 2017 - 随机/策略梯度论文
以下论文均可在 https://amundtveit.com /直接下载
-
Improving Policy Gradient by Exploring Under-appreciated Rewards
作者:: Ofir Nachum, Mohammad Norouzi, Dale Schuurmans
-
Leveraging Asynchronicity in Gradient Descent for Scalable Deep Learning
作者:Jeff Daily, Abhinav Vishnu, Charles Siegel
-
Adding Gradient Noise Improves Learning for Very Deep Networks
作者:: Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, James Martens
-
Inefficiency of stochastic gradient descent with larger mini-batches (and more learners)
作者: Onkar Bhardwaj, Guojing Cong
-
Improving Stochastic Gradient Descent with Feedback
作者: Jayanth Koushik, Hiroaki Hayashi
-
PGQ: Combining policy gradient and Q-learning
作者: Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, Volodymyr Mnih
-
SGDR: Stochastic Gradient Descent with Restarts
作者: Ilya Loshchilov, Frank Hutter
-
Neural Data Filter for Bootstrapping Stochastic Gradient Descent
作者: Yang Fan, Fei Tian, Tao Qin, Tie-Yan Liu
-
Entropy-SGD: Biasing Gradient Descent Into Wide Valleys
作者: Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun
(推荐关注)
-
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
作者: Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine
-
Batch Policy Gradient Methods for Improving Neural Conversation Models
作者:Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter
-
Training Long Short-Term Memory With Sparsified Stochastic Gradient Descent
作者: : Maohua Zhu, Minsoo Rhu, Jason Clemons, Stephen W. Keckler, Yuan Xie
(推荐关注)
-
Parallel Stochastic Gradient Descent with Sound Combiners
作者: Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Yufei Ding
-
Gradients of Counterfactuals
作者: Mukund Sundararajan, Ankur Taly, Qiqi Yan
ICLR 2017 ― RNN深度学习论文
论文均可在 https://amundtveit.com /直接下载
(因微信字数限制,请移步 https://amundtveit.com /查看更多,网站可直接下载论文 )
新智元启动新一轮大招聘 :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。
简历投递:j obs@aiera.com.cn
HR 微信: 13552313024
新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、 高于业界平均水平的工资和奖金。
加盟新智元,与人工智能业界领袖携手改变世界。
点击阅读原文,查看新智元招聘信息。