ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

1 新智元编译

来源:bbvaopenmind.com

作者: Amund Tveit

译者:刘小芹 胡祥杰

   新智元启动新一轮大招聘 :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。

   简历投递:j obs@aiera.com.cn

   HR 微信 13552313024

   新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、 高于业界平均水平的工资和奖金。

   加盟新智元,与人工智能业界领袖携手改变世界。

   【新智元导读】 ICLR 2017 将于2017年4月24日至26日在法国土伦(toulon)举行,11月4日已经停止接收论文。本文汇总了本年度NLP、无监督学习、对抗式生成、自动编码、增强学习、随机循环梯度渐变、RNN等多个领域的150篇论文。其中不乏 Yoshua Bengio、Ian Goodfellow、Yann LeCun、李飞飞、邓力等学者的作品。从收录的论文主题来看,生成和对抗生成式网络的研究成为热点,一共有45篇论文被提交,数量排在第一。文内附下载。

   ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

   ICLR 2017 将于2017年4月24日至26日在法国土伦举行,向大会提交的深度学习论文非常多,无疑这将成为一场盛会(下图展示了提交的论文题目中最频繁出现的单词),可以看到,深度、学习、递归、模型、网络、表征、对抗式、生成等成为热词。

   ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)

与ICLR 2016 相比有哪些变化?

   将使用 OpenReview(而不是 CMT)作为会议通道。此外,提交的论文将交由 OpenReview 管理(无需提交到 arXiv)。

   审查程序将变成两轮。第一轮中,审稿人只能提出澄清性的疑问。程序委员会将评出最佳审稿奖,得奖的审稿人将被列入 ICLR 2018 的候选人名单中。研讨会通道鼓励那些具有高度创新性,但可能未得到充分验证的提交论文。

   评审委员会说,采用 OpenReview 的目标是提高整体审稿过程的质量。OpenReview 可以让作者随时对论文的评论进行回复。此外,社区中的任何人都可以对提交的论文进行评论,审稿者可以利用公开讨论来提高他们对论文的理解和评级。

   下文是对提交给 ICLR 2017 的论文中与自然语言处理(NLP)相关的论文的概览,由 前 Google 工程师、 ZEDGE数据副总裁,AI 顾问/投资者, Memkite 和 Atbrox 的创始人/联合创始人 Amund Tveit整理。

   ICLR 2017 � NLP 论文

   在新智元微信公众号回复1113,下载全部37篇论文。

1.字符/词/句子表征

  1. Character-aware Attention Residual Network for Sentence Representation

       作者: Xin Zheng, Zhenzhou Wu

  2. Program Synthesis for Character Level Language Modeling

       作者: Pavol Bielik, Veselin Raychev, Martin Vechev

  3. Words or Characters? Fine-grained Gating for Reading Comprehension

       作者: Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, Ruslan Salakhutdinov

  4. Deep Character-Level Neural Machine Translation By Learning Morphology

       作者: Shenjian Zhao, Zhihua Zhang

  5. Opening the vocabulary of neural language models with character-level word representations

       作者: Matthieu Labeau, Alexandre Allauzen

  6. Unsupervised sentence representation learning with adversarial auto-encoder

       作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

  7. Offline Bilingual Word Vectors Without a Dictionary

       作者: Samuel L. Smith, David H. P. Turban, Nils Y. Hammerla, Steven Hamblin

  8. Learning Word-Like Units from Joint Audio-Visual Analylsis

       作者:David Harwath, James R. Glass

  9. Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling

       作者: Hakan Inan, Khashayar Khosravi, Richard Socher

  10. Sentence Ordering using Recurrent Neural Networks

       作者: Lajanugen Logeswaran, Honglak Lee, Dragomir Radev

2. 搜索/问答/推荐系统

  1. Learning to Query, Reason, and Answer Questions On Ambiguous Texts

       作者: Xiaoxiao Guo, Tim Klinger, Clemens Rosenbaum, Joseph P. Bigus, Murray Campbell, Ban Kawas, Kartik Talamadupula, Gerry Tesauro, Satinder Singh

  2. Group Sparse CNNs for Question Sentence Classification with Answer Sets

       作者: Mingbo Ma, Liang Huang, Bing Xiang, Bowen Zhou

  3. CONTENT2VEC: Specializing Joint Representations of Product Images and Text for the task of Product Recommendation

       作者: Thomas Nedelec, Elena Smirnova, Flavian Vasile

  4. Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce

       作者: Tom Zahavy, Alessandro Magnani, Abhinandan Krishnan, Shie Mannor

3.词/句嵌入

  1. A Simple but Tough-to-Beat Baseline for Sentence Embeddings

       作者: Sanjeev Arora, Yingyu Liang, Tengyu Ma

  2. Investigating Different Context Types and Representations for Learning Word Embeddings

  3. 作者: Bofang Li, Tao Liu, Zhe Zhao, Xiaoyong Du

  4. Multi-view Recurrent Neural Acoustic Word Embeddings

       作者: Wanjia He, Weiran Wang, Karen Livescu

  5. A Self-Attentive Sentence Embedding

       作者: Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou, Yoshua Bengio

   (推荐关注)

   5. Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks

   作者: Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, Yoav Goldberg

4.多语言/翻译/情感

  1. Neural Machine Translation with Latent Semantic of Image and Text

       作者: Joji Toyama, Masanori Misono, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo

  2. Beyond Bilingual: Multi-sense Word Embeddings using Multilingual Context

       作者: Shyam Upadhyay, Kai-Wei Chang, James Zhou, Matt Taddy, Adam Kalai

  3. Learning to Understand: Incorporating Local Contexts with Global Attention for Sentiment Classification

       作者: Zhigang Yuan, Yuting Hu, Yongfeng Huang

  4. Adaptive Feature Abstraction for Translating Video to Language

       作者: Yunchen Pu, Martin Renqiang Min, Zhe Gan, Lawrence Carin

  5. A Convolutional Encoder Model for Neural Machine Translation

       作者: Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin

  6. Fuzzy paraphrases in learning word representations with a corpus and a lexicon

       作者: Yuanzhi Ke, Masafumi Hagiwara

  7. Iterative Refinement for Machine Translation

       作者: Roman Novak, Michael Auli, David Grangier

  8. Vocabulary Selection Strategies for Neural Machine Translation

       作者: Gurvan L’Hostis, David Grangier, Michael Auli

5.语言模型/文本理解/配对/压缩/分类/++

  1. A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks

       作者: Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, Richard Socher

  2. Gated-Attention Readers for Text Comprehension

       作者: Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov

  3. A Compare-Aggregate Model for Matching Text Sequences

       作者: Shuohang Wang, Jing Jiang

  4. A Context-aware Attention Network for Interactive Question Answering

       作者: Huayu Li, Martin Renqiang Min, Yong Ge, Asim Kadav

  5. FastText.zip: Compressing text classification models

       作者: Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Herve Jegou, Tomas Mikolov

  6. Multi-Agent Cooperation and the Emergence of (Natural) Language

       作者: Angeliki Lazaridou, Alexander Peysakhovich, Marco Baroni

  7. Learning a Natural Language Interface with Neural Programmer

       作者: Arvind Neelakantan, Quoc V. Le, Martin Abadi, Andrew McCallum, Dario Amodei

  8. Learning similarity preserving representations with neural similarity and context encoders

       作者: Franziska Horn, Klaus-Robert Müller

  9. Adversarial Training Methods for Semi-Supervised Text Classification 作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow

       (推荐关注)

  10. Multi-Label Learning using Tensor Decomposition for Large Text Corpora

       作者: Sayantan Dasgupta

  以下论文均可在 https://amundtveit.com /直接下载

   ICLR 2017 ―无监督深度学习论文

  1. Unsupervised Learning Using Generative Adversarial Training And Clustering � 作者: Vittal Premachandran, Alan L. Yuille

  2. An Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax

       作者: Wentao Huang, Kechen Zhang

  3. Unsupervised Cross-Domain Image Generation

       作者: Yaniv Taigman, Adam Polyak, Lior Wolf

  4. Unsupervised Perceptual Rewards for Imitation Learning

       作者: Pierre Sermanet, Kelvin Xu, Sergey Levine

  5. Deep Predictive Coding Networks for Video Prediction and Unsupervised Learning

       作者: William Lotter, Gabriel Kreiman, David Cox

  6. Unsupervised sentence representation learning with adversarial auto-encoder � 作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

  7. Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks

  8. 作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick

  9. Generalizable Features From Unsupervised Learning

       作者: Mehdi Mirza, Aaron Courville, Yoshua Bengio

   (推荐关注)

   10. Reinforcement Learning with Unsupervised Auxiliary Tasks

   作者: Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, Koray Kavukcuoglu

   11. Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data

   作者: Maximilian Karl, Maximilian Soelch, Justin Bayer, Patrick van der Smagt

   12. Unsupervised Learning of State Representations for Multiple Tasks

   作者 : Antonin Raffin, Sebastian Höfer, Rico Jonschkowski, Oliver Brock, Freek Stulp

   13. Unsupervised Pretraining for Sequence to Sequence Learning

   作者: Prajit Ramachandran, Peter J. Liu, Quoc V. Le

   14. Unsupervised Deep Learning of State Representation Using Robotic Priors

   作者 : Timothee LESORT, David FILLIAT

   15. Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders

   作者 : Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

   16. Deep unsupervised learning through spatial contrasting

   作者 : Elad Hoffer, Itay Hubara, Nir Ailon

   ICLR 2017 ―自动编码深度学习论文

   以下论文均可在 https://amundtveit.com /直接下载

  1. Revisiting Denoising Auto-Encoders

       作者:Luis Gonzalo Sanchez Giraldo

  2. Epitomic Variational Autoencoders

       作者: Serena Yeung, Anitha Kannan, Yann Dauphin, Li Fei-Fe i

   (推荐关注)

   3. Unsupervised sentence representation learning with adversarial auto-encoder

   作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

   4. Tree-Structured Variational Autoencoder

   作者: Richard Shin, Alexander A. Alemi, Geoffrey Irving, Oriol Vinyals

   5. Lossy Image Compression with Compressive Autoencoders

   作者: Lucas Theis, Wenzhe Shi, Andrew Cunningham, Ferenc Huszár

   6. Variational Lossy Autoencoder

   作者 : Xi Chen, Diederik P. Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, Pieter Abbeel

   7. Stick-Breaking Variational Autoencoders

   作者: Eric Nalisnick, Padhraic Smyth

   8. ParMAC: distributed optimisation of nested functions, with application to binary autoencoders

   作者: Miguel A. Carreira-Perpinan, Mehdi Alizadeh

   9. Discrete Variational Autoencoders 作者: Jason Tyler Rolfe

   10. Deep Unsupervised Clustering with Gaussian Mixture\Variational Autoencoders

   作者: Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew,C.H. Lee, Hugh Salimbeni, Kai Arulkumaran, Murray Shanahan

   11. Improving Sampling from Generative Autoencoders with Markov Chains

   作者: Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath

   ICLR 2017 ―增强学习深度学习论文

   以下论文均可在 https://amundtveit.com /直接下载

  1. Stochastic Neural Networks for Hierarchical Reinforcement Learning

       作者: Carlos Florensa, Yan Duan, Pieter Abbeel

  2. #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

       作者 : Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi C

    hen, Yan Duan, John Schulman, Filip De Turck, Pieter Abbeel

  3. Learning Invariant Feature Spaces to Transfer Skills with Reinforcement Learning

       作者 : Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, Se

    rgey Levine

  4. Deep Reinforcement Learning for Accelerating the Convergence Rate

       作者 : Jie Fu, Zichuan Lin, Danlu Chen, Ritchie Ng, Miao Liu, Nicholas Leonard, Jiashi Feng, Tat-Seng Chua

  5. Generalizing Skills with Semi-Supervised Reinforcement Learning

       作者: Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine

  6. Learning to Perform Physics Experiments via Deep Reinforcement Learning � 作者: Misha Denil, Pulkit Agrawal, Tejas D Kulkarni, Tom Erez, Peter Batta

    glia, Nando de Freitas

  7. Designing Neural Network Architectures using Reinforcement Learning

       作者: Bowen Baker, Otkrist Gupta, Nikhil Naik, Ramesh Raskar

  8. Reinforcement Learning with Unsupervised Auxiliary Tasks

       作者 : Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,David Silver, Koray Kavukcuoglu

  9. Options Discovery with Budgeted Reinforcement Learning

       作者: Aurelia Lon, Ludovic Denoyer

  10. Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU

       作者: Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons,Jan Kautz

  11. Multi-task learning with deep model based reinforcement learning

       作者:Asier Mujika

  12. Neural Architecture Search with Reinforcement Learning

       作者: : Barret Zoph, Quoc Le

  13. Tuning Recurrent Neural Networks with Reinforcement Learning

       作者: : Natasha Jaques, Shixiang Gu, Richard E. Turner, Douglas Eck

  14. RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning

       作者: Yan Duan, John Schulman, Xi Chen, Peter Bartlett, Ilya Sutskever, Pieter Abbeel

  15. Learning to Repeat: Fine Grained Action Repetition for Deep Reinforcement Learning

       作者: Sahil Sharma, Aravind S. Lakshminarayanan, Balaraman Ravindran

  16. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

       作者: Frank S.He, Yang Liu, Alexander G. Schwing, Jian Peng

  17. Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning

       作者 : Joshua Achiam, Shankar Sastry

  18. Learning to Compose Words into Sentences with Reinforcement Learning

       作者: Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, Wang Ling

  19. Spatio-Temporal Abstractions in Reinforcement Learning Through Neural Encoding

       作者: Nir Baram, Tom Zahavy, Shie Mannor

  20. Modular Multitask Reinforcement Learning with Policy Sketches

       作者: Jacob Andreas, Dan Klein, Sergey Levine

  21. Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear

       作者: Zachary C. Lipton, Jianfeng Gao, Lihong Li, Jianshu Chen, Li Deng

   (推荐关注)

   ICLR 2017 生成和对抗式生成论文(45篇)

   以下论文均可在 https://amundtveit.com /直接下载

  1. Unsupervised Learning Using Generative Adversarial Training And Clustering

       作者: Vittal Premachandran, Alan L. Yuille

  2. Improving Generative Adversarial Networks with Denoising Feature Matching

       作者: David Warde-Farley, Yoshua Bengio

  3. Generative Adversarial Parallelization

       作者: Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor

  4. b-GAN: Unified Framework of Generative Adversarial Networks

       作者: Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo

  5. Generative Adversarial Networks as Variational Training of Energy Based Models

       作者:Shuangfei Zhai, Yu Cheng, Rogerio Feris, Zhongfei Zhang

  6. Boosted Generative Models

       作者: Aditya Grover, Stefano Ermon

  7. Adversarial examples for generative models

       作者: Jernej Kos, Dawn Song

  8. Mode Regularized Generative Adversarial Networks

       作者: Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li

  9. Variational Recurrent Adversarial Deep Domain Adaptation

       作者:: Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu

  10. Structured Interpretation of Deep Generative Models

       作者: N. Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank Wood, Noah D. Goodman, Pushmeet Kohli, Philip H.S. Torr

  11. Inference and Introspection in Deep Generative Models of Sparse Data

       作者:Rahul G. Krishnan, Matthew Hoffman

  12. Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy

       作者: Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, Arthur Gretton

  13. Unsupervised sentence representation learning with adversarial auto-encoder

       作者: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang

  14. Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks

       作者: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick

  15. A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Noise

       作者: Beilun Wang, Ji Gao, Yanjun Qi

  16. On the Quantitative Analysis of Decoder-Based Generative Models

       作者: Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger Grosse

  17. Evaluation of Defensive Methods for DNNs against Multiple Adversarial Evasion Models

       作者:Xinyun Chen, Bo Li, Yevgeniy Vorobeychik

  18. Calibrating Energy-based Generative Adversarial Networks

       作者: Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, Aaron Courville

  19. Inverse Problems in Computer Vision using Adversarial Imagination Priors

       作者: Hsiao-Yu Fish Tung, Katerina Fragkiadaki

  20. Towards Principled Methods for Training Generative Adversarial Networks作者: Martin Arjovsky, Leon Bottou

  21. Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning

       作者: Dilin Wang, Qiang Liu

  22. Multi-view Generative Adversarial Networks

       作者: Mickaël Chen, Ludovic Denoyer

  23. LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

       作者: Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh

  24. Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

       作者: Emily Denton, Sam Gross, Rob Fergus

  25. Generative Adversarial Networks for Image Steganography

       作者: Denis Volkhonskiy, Boris Borisenko, Evgeny Burnaev

  26. Unrolled Generative Adversarial Networks

       作者: Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein

  27. Generative Multi-Adversarial Networks

       作者: Ishan Durugkar, Ian Gemp, Sridhar Mahadevan

  28. Joint Multimodal Learning with Deep Generative Models

       作者: Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo

  29. Fast Adaptation in Generative Models with Generative Matching Networks

       作者: Sergey Bartunov, Dmitry P. Vetrov

  30. Adversarially Learned Inference

       作者: Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, Aaron Courville

  31. Perception Updating Networks: On architectural constraints for interpretable video generative models

       作者: Eder Santana, Jose C Principe

  32. Energy-based Generative Adversarial Networks

       作者:Junbo Zhao, Michael Mathieu, Yann LeCun

  33. Simple Black-Box Adversarial Perturbations for Deep Networks

       作者: Nina Narodytska, Shiva Kasiviswanathan

  34. Learning in Implicit Generative Models

       作者: Shakir Mohamed, Balaji Lakshminarayanan

  35. On Detecting Adversarial Perturbations

       作者: Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff

  36. Delving into Transferable Adversarial Examples and Black-box Attacks

       作者: Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song

  37. Adversarial Feature Learning

       作者:Jeff Donahue, Philipp Krähenbühl, Trevor Darrell

  38. Generative Paragraph Vector

       作者: Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, Xueqi Cheng

  39. Adversarial Machine Learning at Scale

       作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio

  40. Adversarial Training Methods for Semi-Supervised Text Classification

       作者: Takeru Miyato, Andrew M. Dai, Ian Goodfellow

  41. Sampling Generative Networks: Notes on a Few Effective Techniques

       作者: Tom White

  42. Adversarial examples in the physical world

       作者: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio

  43. Improving Sampling from Generative Autoencoders with Markov Chains

       作者:Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath

  44. Neural Photo Editing with Introspective Adversarial Networks

       作者: Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston

  45. Learning to Protect Communications with Adversarial Neural Cryptography

  46. 作者: Martín Abadi, David G.

   ICLR 2017 - 随机/策略梯度论文

   以下论文均可在 https://amundtveit.com /直接下载

  1. Improving Policy Gradient by Exploring Under-appreciated Rewards

       作者:: Ofir Nachum, Mohammad Norouzi, Dale Schuurmans

  2. Leveraging Asynchronicity in Gradient Descent for Scalable Deep Learning

       作者:Jeff Daily, Abhinav Vishnu, Charles Siegel

  3. Adding Gradient Noise Improves Learning for Very Deep Networks

       作者:: Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Lukasz Kaiser, Karol Kurach, Ilya Sutskever, James Martens

  4. Inefficiency of stochastic gradient descent with larger mini-batches (and more learners)

       作者: Onkar Bhardwaj, Guojing Cong

  5. Improving Stochastic Gradient Descent with Feedback

       作者: Jayanth Koushik, Hiroaki Hayashi

  6. PGQ: Combining policy gradient and Q-learning

       作者: Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, Volodymyr Mnih

  7. SGDR: Stochastic Gradient Descent with Restarts

       作者: Ilya Loshchilov, Frank Hutter

  8. Neural Data Filter for Bootstrapping Stochastic Gradient Descent

       作者: Yang Fan, Fei Tian, Tao Qin, Tie-Yan Liu

  9. Entropy-SGD: Biasing Gradient Descent Into Wide Valleys

       作者: Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun

       (推荐关注)

  10. Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic

       作者: Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E. Turner, Sergey Levine

  11. Batch Policy Gradient Methods for Improving Neural Conversation Models

       作者:Kirthevasan Kandasamy, Yoram Bachrach, Ryota Tomioka, Daniel Tarlow, David Carter

  12. Training Long Short-Term Memory With Sparsified Stochastic Gradient Descent

       作者: : Maohua Zhu, Minsoo Rhu, Jason Clemons, Stephen W. Keckler, Yuan Xie

       (推荐关注)

  13. Parallel Stochastic Gradient Descent with Sound Combiners

       作者: Saeed Maleki, Madanlal Musuvathi, Todd Mytkowicz, Yufei Ding

  14. Gradients of Counterfactuals

       作者: Mukund Sundararajan, Ankur Taly, Qiqi Yan

   ICLR 2017 ― RNN深度学习论文

  论文均可在 https://amundtveit.com /直接下载

  (因微信字数限制,请移步 https://amundtveit.com /查看更多,网站可直接下载论文

   新智元启动新一轮大招聘 :COO、执行总编、主编、高级编译、主笔、运营总监、客户经理、咨询总监、行政助理等 9 大岗位全面开放。

   简历投递:j obs@aiera.com.cn

   HR 微信: 13552313024

   新智元为COO和执行总编提供最高超百万的年薪激励;为骨干员工提供最完整的培训体系、 高于业界平均水平的工资和奖金。

   加盟新智元,与人工智能业界领袖携手改变世界。

   点击阅读原文,查看新智元招聘信息。

随意打赏

无监督学习
提交建议
微信扫一扫,分享给好友吧。