一纵一横,搭建完整数据分析体系

我是创始人李岩:很抱歉!给自己产品做个广告,点击进来看看。  

编辑导语:如今随着互联网不断发展,各产品的数据体量都变得很大,数据分析体系就发挥了巨大的作用;搭建一个完整有效的数据分析体系,可以提高你的工作效率以及准确度。本文将整个体系概括为:一纵一横。推荐对搭建数据分析体系感兴趣的用户阅读。

一纵一横,搭建完整数据分析体系

新年伊始,很多公司都在制定年度计划,有同学会问:数据分析的计划该怎么定呢?

今天给大家一个最全面的数据分析体系,涵盖了公司级全部场景。大家可以对着参照,看自己的发力点在哪里。

整个体系可以概括为:一纵一横。话不多说,上干货!

一、一纵:从效果角度看工作

问一个简单而关键的问题:数据分析,到底有啥用?

答:站在业务的角度,数据分析有6大用处

  1. 目标制定:确定量化目标,分解下发目标
  2. 趋势预测:预测正常走势,提供决策参考
  3. 过程监控:监控业务发展,发现过程问题
  4. 结果复盘:复盘绩效表现,总结成果经验
  5. 原因分析:分析问题原因,探索解决方法
  6. 方法测试:测试优化方法,选择更优做法

这六个场景,贯穿业务工作全过程,最能体现数据分析的价值。因此,当我们思考数据分析可以做什么的时候,可以先思考这六个场景,目前的工作满足了多少需求?还有哪些是可以做的(如下图)?

一纵一横,搭建完整数据分析体系

注意:数据并非不可替代!这6步即使没有数据,业务方也能做。

比如,经典的场景是:

  1. 目标制定,是老板授意财务整出来的。
  2. 趋势预测,是领导们拍脑袋拍出来的。
  3. 结果复盘,业务自己往自个脸上贴金。
  4. 方法测试,压根就不存在(老夫说是,丫就是!)

最有可能,只有过程监控,与发现问题以后的原因分析,是甩给数据分析做的。

但这样的话,工作就太被动了。不清楚目标,不清楚业务基础走势,不清楚方法背后业务逻辑,光看一个数字是很难分析出原因的。

因此相当多数据部门退化成只能监控个数据。甚至只能提个数。

这种被动局面,是在年初定规划的时候要尽力避免的。此时不争,更待何时!

此时可以:

  1. 向大老板开展游说,灌输“全流程数据管理”的理念,增加工作场景。
  2. 结合行业内成功的数字化案例,向所有人安利数据价值,扩大工作。
  3. 观察每个部门的工作风格,看哪些部门容易谈,能找到合作机会。

这样做,就得认真研究企业内各部门分工情况,这就涉及到“一横”概念。

二、一横:从部门角度看机会

问一个简单的问题:是否各个部门对数据重视程度一样?

答:当然不一样!

从部门职责上看,部门可以分为四大类:

1. 管理型

典型如:总裁办、战略发展部、财务部。

这些部门直接与公司最高层沟通,很多重大的发展计划,年度KPI目标,经营任务,都是这些部门参与制定的。这些部门很重视数据!

因为所有的目标、任务、计划都得量化。他们常见的问题是:知其然,不知其所以然,以财务部尤甚。算账算得很精明,可对于业务细节不甚了解。

此时,想要和这些部门交好,可以从提供基础数据突破。

在提供数据的同时,主动帮他们梳理关键业务流程,清晰常规的业务基线,补齐他们在业务理解上的短板。这样能有更多机会合作。(如下图)。

一纵一横,搭建完整数据分析体系

2. 收入型

典型如:销售、投放、增长部门。

这些部门负担主要的收入任务,是业绩、利润的主要来源。但是,这些部门一般都不重视数据。能看到任务目标、完成率就差不多了。

他们更喜欢看案例拆解,看操作指南,看具体做法。总之,手里用得上的才是好东西。

此时,想要和这些部门交好,可以从工具入手。

不要整复杂的报表,而是根据看表人关心的内容,分层级提供数据。越是基层的,给看的数据越少,最好只留关键KPI。

功能上,和CRM等工具打通,在提供数据的同时,直接提供可操作功能,这样才受一线欢迎(如下图)。

一纵一横,搭建完整数据分析体系

3. 成本型

典型如采购、研发、设计。

这些部门基本都在消耗成本,很难直接见成效,万一做不好了引发用户讨厌、产品积压、库存不足,还会影响销量……而且,这些部门又受到销售、营销营销,很难独善其身。

这时候要区别对待:

对于采购、生产、供应这种容易产生硬损失的部门,重点做好数据滚动预测与数据监控。

对于来自上游供给、下游需求、大促活动等影响因素及时收集,结合供给进度与库存情况,预报可能存在的积压/缺货问题(如下图)。

一纵一横,搭建完整数据分析体系

对于研发、设计、产品这种容易产生软损失的部门,重点最好测试平台和测试服务。用常规监测发现问题,用好的测试来检验改善效果(如下图)。

一纵一横,搭建完整数据分析体系

4. 混合型

典型如营销、运营部门。这些部门很喜欢看数据,且其工作效果,是叠加在销售基础上产生的,很难观察。因此做分析的时候特别纠结。好在,他们的工作多是项目制的,可以逐个攻破。

常见的项目,包括:

  1. 大促活动
  2. 用户洞察
  3. 品牌传播
  4. 社群运营

这些在之前的文章已经有很多分享,这里就不赘述了。想洞察得深刻,想分析得到位,重点是培养业务部门的好习惯,打好数据基础。

比如:

  1. 用户标签、商品标签、内容标签、渠道标签等标签库的完善与维护。
  2. 活动标签与活动分类信息管理,活动考核标准记录,事前参照组设计。
  3. 社群运营、新媒体运营、短视频带货、直播带货基础数据收集

基础工作做好了,事后大量数据可以分析。

基础工作没做好,事后分析个屁……

一纵一横,搭建完整数据分析体系

整体安排:分阶段,做出标杆项目。

注意:上述的工作,在业务部门那里是有先后顺序的。

  1. 一般1、2、3月,做年度规划的比较多
  2. 上半年招新人、组团队、小规模试点多
  3. 重大促销、节日活动集中在下半年

清晰了业务部门行动以后,数据部门的整体安排就很清晰了:

  1. 年初,以预测、目标制定、搭建体系等基础工作为主。
  2. 上半年,优先强化基础能力,对基础数据、测试平台、标签库等工具,能强化尽量强化。
  3. 下半年,以重大项目为主,做好项目支持,做好监控与复盘,做好用户洞察。

输出的目标,以每个月都能有一个项目上线/更新为目标。这样每个季度的季报容易写,来年年度总结也就不纠结了(如下图)。

一纵一横,搭建完整数据分析体系

以上,就是数据部门规划的整体思路。当然每个企业具体情况不同。同学们可以量体裁衣,根据自己面对具体情况做调整。

当然,可能有同学会说:“规划这种高大上的事轮不到我,我就是一个小兵,日常都在跑数,咋办?!”

碰到这种情况,等待别人施舍肯定不是好办法。普通的日常工作,也能延伸出很多有价值的项目,这是数据分析工作的独特优势。

#专栏作家#

接地气的陈老师,微信公众号:接地气学堂,人人都是产品经理专栏作家。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。

本文原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议。

给作者打赏,鼓励TA抓紧创作!

随意打赏

提交建议
微信扫一扫,分享给好友吧。