用户运营,如何做好活跃用户的数据分析

今天先聊一聊用户运营中,有关活跃的基础话题。

用户运营,如何做好活跃用户的数据分析

对一家互联网公司来说,如果没有设置单独的数据运营岗,那么用户运营是和数据最贴近,也必须是最了解用户的。

用户运营核心的方法论就三个:拉新,促活和留存。拉新可以作为渠道推广单独讨论,而促活和留存则相辅相成。

非运营岗,或者其他类型的运营,通常只会注重一个活跃数据的果,而不会注意活跃数据的因。我们在这里就抽丝剥茧,教大家比较快速地了解活跃体系。

互联网公司对活跃用户的定义大同小异,主要以用户打开APP一次记为一个活跃用户。

按此基础可以在时间维度引申出周活跃用户,月活跃用户。即在一个自然周内打开一次APP,则本周为周活跃用户。月活跃用户同理。

我们假设有一款新产品,这是它四个月内的活跃数据。嗯,看来不错。


产品专注的市场领域不同,活跃用户数天差地别。一款小众的垂直领域产品和泛社交类产品,单纯看活跃用户数,你很难界定它们好坏。

好的数据指标,都应该是比例或比率。

我们设定一个新指标,活跃率:某一时间段内活跃用户在总用户量的占比。

按照时间维度引申,有日活跃率DAU,周活跃率WAU,月活跃率等MAU。

例:月活跃,本月活跃用户在截止月末的总注册用户中占比。

一般而言:活跃用户数,看的是产品的市场体量。活跃率,看的是产品的健康度。

实际得承认,不同产品,用户需求(高频或低频)不同,活跃率也有差异。用户运营更多的职责是监控活跃率的变化,并且提升它。


看,我们的活跃用户数上升,活跃率下降,这对新产品来说很正常。你不能要求每一个用户都使用我们产品不是?

别急,我还没补刀呢。

我们统计了注册用户数,那么我们也可以统计出本月新增用户数,很简单,两个月相减。


是不是看出来什么了?

要知道,按照活跃的定义,新注册的用户肯定是打开APP的用户,他也一定是活跃的用户。

所以,我们拿每月的注册总用户数减去新增用户数,计算老用户数。并且将新老用户的活跃率独立出来。


指标拆分后,我们发现老用户的活跃率比预期低。实际在产品早期、渠道投入资源推广、或一次成功的病毒营销后,因为新增用户数量的暴涨,总是会带动活跃数的上升。

A产品打算在五月份做大投入,在APP上进行活动,希望用户大力参与,同时在B渠道进行推广。在常规的统计指标中,发现活跃数据上升。事后分析发现活跃为新增活跃,老用户的活跃数据没有显著上升。配合其他活动数据,证实活动效果较差。

C产品获得投资后,通过大规模的烧钱推广,获得一个正向的活跃数据反馈。此时活跃有不小可能是由新增用户撑起的。产品自身的打磨若不好,老用户活跃率不会提高,这也是我们常说的留存概念。导致钱白白浪费不少。

产品进入稳定期后,有了一定用户规模,新增活跃一般对活跃数据就不会有大的影响了。那么以新老用户区分活跃统计就够了?我们简单定义三个场景:

  • 用户A下载产品后,把玩了一段时间,发现这是他想要的功能,爱不释手,成为发烧用户;
  • 用户B下载产品后,看了几眼就不再使用。产品2.0发布后,觉得有个新特性不错,于是回来继续使用,逐渐成为活跃份子;
  • 用户C从网上看到随便下载的,用了产品觉得一般,吐槽几句并且卸载,不再使用;

用户包含各种类型,反应了不同群体的特征和想法。在使用整个产品的周期中,我们应定义更全面的指标:

  • 流失用户: 有一段时间没有再打开产品,那么我们就视为流失用户,根据产品的属性,可以按30天,60天,90天等划分。
  • 不活跃用户: 有一段时间没有打开产品,为了和流失区分开来,需要选择无交集的时间范围。比如流失用户是60天以上没打开产品,那么不活跃则是0~60天没打开。
  • 回流用户: 有一段时间没用产品,之后突然回来再次使用,则称为回流用户。回流用户是活跃用户,且是由流失用户或不活跃用户唤回而来。
  • 活跃用户: 一段时间内打开过产品。
  • 忠诚用户: 也可以叫超级活跃用户,长期持续使用产品,比如连续四周,或者一个月内15天等。

现在我们发现,不论是活跃用户还是不活跃用户的维度,都一下子丰富了起来。


通俗的理解一下用户活跃的变化


上文ABC的三位用户活跃路径为:

  • A:新增—活跃—忠诚
  • B:新增-不活跃-回流-活跃-忠诚
  • C:新增-不活跃-流失

回到一开始那款产品的数据,我们将分解后的新指标统计出来。(定义忠诚用户一个月内有15天活跃;流失用户为两个月没打开过)


(以上数据以月末当天的统计为准)

你看,指标开始变得复杂了。产品有长期使用的忠实用户,也有流失用户。有用户回来继续使用,也有用户不怎么爱用产品。

数据是为了方便讲解随手编的。实际的情况可能会更复杂,可以根据情况灵活应对。

用户活跃可以简化为一个最简单的公式: 新增用户的数量要大于流失用户的增加量。 可以想成一个水池,运营会一直往里灌水,但是水池也会漏水,如果漏水速度太大,那么水池就干了。一款产品可能因为市场竞争、拉新乏力导致新增用户数下降,也可能因为产品改动,运营策略失误造成后续流失用户变多。

将数据制作图表:


(活跃用户和不活跃用户可以拆分出来,周活跃同理)

用户运营们可以按照日、周、月维度维护三张报表,监控活跃数据的变化(建议花更多精力在周报表上)。

如果是一个好的用户运营,他会继续思考:每天有多少活跃用户变得不活跃?有多少忠诚用户变得不活跃?又有多少流失用户被我们唤回来等,并且分别是什么原因引起的。

怎么样更详细的监控活跃数据的变化呢?我们引入桑基(Sankey)图的概念。


这时,活跃数据比单纯的表格清晰多了,而且我们也能够显著观察到不同活跃层的变化。万千变化,存乎一图。
有了数据和趋势,我们应该聚焦更多精力到怎么去应用在运营和业务上。

观察忠诚用户,发现他们有什么特征,为什么爱用我们产品。同样的道理,我们也能观察流失用户;

忠诚或流失用户是否在推广渠道上有显著差异(配合新增留存数据)。

某一段时间回流用户增加,是产品更新,市场推广,还是活动营销?

本周,变成不活跃的用户比以前多,要不要做一次用户访谈看下原因?

活跃的用户用Push营销,流失的用户用短信营销,这是不是一个好方法?

以上种种,皆是用户运营需要考虑,也是要和各部门协同解决,贯彻整个产品一生的运营方向。

活跃类指标有一个显著特点需要明白,它们都是后见性的指标,也就是事情发生后我们才能观察到。比如我们发现某一段时间流失数据(假定两个月没打开APP为流失)上升,往前倒推两个月,发现当时刚好展开一次活动,那么我们有理由相信活动造成了一批用户卸载,可惜运营此时已经无能无力。 先见性预防比后见性观察对运营更重要

根据不同的用户活跃状态,依据产品的特性能采取很多运营手段。这是精准化运营的第一步。接下来则是划分用户层次等,进行更精准的运营,不过那是另外的话题了。

用户运营路漫漫修远兮,用我偶然得之的一句话做结尾吧。

别低头,活跃会掉,别流泪,报表会笑。

 

作者:秦路,公众号:tracykanc

本文由 @秦路 原创发布于人人都是产品经理。未经许可,禁止转载。

本文被转载1次

首发媒体 人人都是产品经理 | 转发媒体

随意打赏

运营如何做数据分析如何分析活跃用户微信运营数据分析用户运营数据分析如何做好用户运营游戏运营数据分析运营 用户分析app用户运营互联网用户运营用户活跃分析
提交建议
微信扫一扫,分享给好友吧。